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Abstract

This paper proposes a semi-conditional normaliz-
ing flow model for semi-supervised learning. The
model uses both labelled and unlabeled data to
learn an explicit model of joint distribution over
objects and labels. Semi-conditional architecture
of the model allows us to efficiently compute a
value and gradients of the marginal likelihood for
unlabeled objects. The conditional part of the
model is based on a proposed conditional cou-
pling layer. We demonstrate a performance of
the model for semi-supervised classification prob-
lem on different datasets. The model outperforms
the baseline approach based on variational auto-
encoders on MNIST dataset.

1. Introduction

Modern supervised machine learning approaches require
large amount of labelled data. However, large labelled
datasets are not always available and cannot be collected
without additional effort. In many fields, on the other hand,
unlabelled data is accessible. This makes semi-supervised
learning an important field of machine learning research.
Semi-supervised methods aim to employ unlabelled data to
achieve a competitive performance of supervised models
while using only a few labelled examples. Previous work
on this topic includes Joachims (1999); Blum et al. (2004);
Rosenberg et al. (2005). These methods, however, poorly
scale on huge unlabelled datasets and high dimensional data
Zhu (2005); Kingma et al. (2014).

Recent advances in unsupervised learning, specifically deep
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generative models (Kingma & Welling, 2013; Goodfellow
et al., 2014; Dinh et al., 2014; Van den Oord et al., 2016),
allow to model complex data distribution py(x). Modern
methods for semi-supervised learning (Kingma et al., 2014;
Springenberg, 2015; Salimans et al., 2016) actively em-
ploy deep generative models to learn from unlabeled data.
The common approach suggests to model joint distribution
po(x,y) = po(x|y)p(y) over objects x and labels y, where
po(x|y) is a conditional generative model. The joint distri-
bution allows inferring class-label distribution pg(y|z) that
is used to make a prediction for a supervised problem.

Kingma et al. (2014) proposed a semi-supervised learning
method that is based on variational auto-encoders (Kingma
& Welling, 2013). This approach scales well on large
datasets and provides flexible generative models for high-
dimensional data. However, direct likelihood optimization
in this case is intractable, and it is usually tackled by meth-
ods for approximate variational inference (Paisley et al.,
2012; Hoffman et al., 2013; Ranganath et al., 2014).

Recently a new family of deep generative models called nor-
malizing flows has been proposed (Rezende & Mohamed,
2015). Normalizing flows model data by a deterministic
invertible transformation of a simple random variable, e.g.
standard normal. The framework provides a tractable like-
lihood function and allows its direct optimization. Data
distribution in this case can be inferred using change of
variables formula by computing Jacobian determinant of
the transformation. Recent advances in this field (Kingma
et al., 2016; Dinh et al., 2016; Kingma & Dhariwal, 2018;
Grathwohl et al., 2018; Berg et al., 2018) provide a number
of flexible architectures with tractable and efficient determi-
nant computation.

It has been shown that dimension reduction is crucial for
semi-supervised methods (Kingma et al., 2014). Unfortu-
nately, normalizing flows have a latent representations of
the same dimension as input data. However, it was shown
that a multi-scale architecture (Dinh et al., 2016) produces
latent representation, in which only a small part of com-
ponents stores consistent semantic information about input
data. That opens a possibility to use this kind of architecture
for dimension reduction.

In this paper, we propose Semi-Conditional Normalizing
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Flow — a new normalizing ow model that is suitable

3. Semi-Conditional Normalizing Flows

for semi-supervised classi cation problem. The proposed

model provides a tractable likelihood estimation for botl

h3.1. Normalizing Flows

labeled and unlabeled data. The semi-conditional arChitewormanzing ows model data as a deterministic and invert-
ture (Section 3.3) allows us to effectively compute value andple transformatiorx = g (z) of a simple random variable

gradients of a marginal likelihoogl (x). The conditional
distributionp (xjy) is modelled by a proposezmbnditional
coupling layer that is built on the top of the original cou-

z, e.g. standard normal. We denote an inverse transforma-
tiong ! asf , i.e. this inverse function maps datato
latent representation Log-density of this model can be

pllng Iayer (Dlnh et aI., 2016) For dimension reduction, We calculated using Change of variable formula:
adapt a multi-scale architecture, and we nd it to be a crucial

component of our model. In experiments, we demonstrate

the empirical performance of the model for semi-supervised
classi cation problem. We also nd that the proposed model
incorporates a data obfuscation mechanism by design, thAfhere

may be useful for semi-supervised fair learning.

2. Semi-Supervised Learning with
Deep Generative Models

@f (x
ogp () =log 2% +iogp2; (2
% is a Jacobian of the transformatién and

prior p(z) is a standard normal distributidw (zjO;1). The
transformatiorf has to be bijective and has a tractable
Jacobian determinant. A number of ow architectures (Dinh
etal., 2014; Kingma et al., 2016; Kingma & Dhariwal, 2018)
have been proposed recently. These architectures are based

We consider semi-supervised classi cation problem withon operations with simple form determinant of Jacobian.

partly labelled dataset. Let us denote an objeot; & R®

denote the set of labelled and unlabelled objects asdU
respectively. Generative model with parametede nes
joint likelihood p (x;y) of an object and its label. The
objective function for this model is a log-likelihood of the
dataset:

@

X
logp (xi;yi)+ logp (X;);

(xizyi)2L Xj2U

L()=

wherep (x;) = P E:l p (Xj;y=Kk) is a marginal likeli-
hood for unlabelled object. The joint likelihoga (X; y)

is often parameterized @s(x;y) = p (Xjy)p(y), where a
prior p(y) is a uniform categorical distribution and a condi-
tional distributionp (xjy) is de ned by a conditional gener-
ative model. On the test stage, the prediction of the model
a posterior distribution over labgts (yjx) — can be found

asp (yix) = %55

For example, Real NVP architecture proposed by Dinh et al.
(2016) is based on an af ne coupling layer. This layer splits
an input variable into two non-overlapping parts; ; X

and applies af ne transformation based on the rst part

to the othe in the following way:

71 = X1; Z2= X2 exp(s(x1)) + t(x1);

wheres;t are arbitrary neural networks. This transforma-
tion has a simple triangular Jacobian, and the use of neural
networks allows to model complex non-linear dependencies.

3.2. Dimension Reduction with Normalizing Flows

It has been shown that performance of a semi-supervised
model bene ts from using low-dimensional data represen-
tation (Kingma et al., 2014). We also observe this effect
in our experiments (Section 4.3). Unfortunately, normal-
izing ows preserve a dimensionality afequal tox one.
However, modern normalizing ow models have multiscale

structure, where differnet parts of the latent representation

Kingma et al. (2014) proposed to use variational autoZ Pass different number of transformations. The part that
encoders (Kingma & Welling, 2013) as the conditional genfasses all transformations contains most of semantic infor-

erative modep (xjy). However, such parametrization, does
not allow to maximize the objectivel) directly and obliges

mation about an input object (Dinh et al., 2016), we will
refer to this part ag: and to the other componentsagy .

to use stochastic optimization of a variational lower bound,

that does not guarantee convergence to the maximuih).of
Additionally, the posterior predictive distributign (yjx)
cannot be computed in a closed form and needs a tim
consuming sample-based estimation.

3.3. Semi-Conditional Normalizing Flow

Semi-supervised methods based on generative models re-

e_

guire conditional density estimation (Section 2). In order
to model conditional distributiop (xjy) rather then just

We present a new way to model the conditional distributionp (x) we have to condition the transformatibnony. Per-

p (xjy) using normalizing ows (Rezende & Mohamed,

haps, the simplest way would be to use different ows for

2015). In our approach we have access to all required distreach class (Trippe & Turner, 2018). Nevertheless, this ap-

butions to maximize log-likelihood of the daf&) directly
and to compute exact posteripr(yjx) see (Section 3.3).

proach has high memory cost and does not share weights
between classes. In (Kingma et al., 2016) authors proposed
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Moons Circles
Error,% NLL Error,% NLL

GLOwW 06 04 111 002 50 19 1.68 0.13
GMM 12 12 115 0.01 142 90 1.28 0.15
GLOW 03 0.2 112 003 6.2 22 1.7 0.2

FFJORD GMM 53 63 115 0.06 25 2 0.97 0.05

fw h

GLOW

Table 1: Test accuracy and negative log-likelihood (NLL)

for different models on two toy datasets (see visualization at

Appendix. D).f corresponds to the unconditional part and
Figure 1: The proposed semi-conditional architecture cor  to the conditional part of SCNF model (Fig. 1). GMM
sists of two parts: a large unconditional oiy,(x), anda stands for Gaussian mixture model, and Glow is a ow-
relatively small conditional owh (z ;y). The uncondi- based model. Glow conditional ol interms of test error
tional ow f,,(x) is based on a multi-scale architecture andoutperforms GMM for different types of unconditional ow
maps an inpux into a low-dimensionat; and an auxiliary —on both datasets. Taking into account values of uncertainties,
vectorza,x . The conditional owh (z ;y) maps the low- We see that unconditional FFJORD gives roughly the same
dimensional vectoz; toz, = h (z ;y). The architecture testerror and negative log-likelihood as unconditional Glow.
allows to comput® (x)= Eyp (x;y) with a single forward
pass of the computationally expensive dw and one pass

of the inexpensive owh for every class labey. 3.4. Learning of Semi-Conditional Normalizing Flows

The parameters = fw; g of the model(4) are esti-

a memory ef cient conditional autoregressive architecture.mated via maximum likelihood approagh). Normaliz-

. : ing ows provide us with tractable log-likelihood func-
Unfortunately, sequential structure of autoregressive mOdelﬁon logp (x:y) (4) along with marginal log-likelihood
leads to high computationa] cost. Thgrefore, we adapt 'Iaogp (x). Th,erefore we can compute a gradient. ( ) of
more memory and computaﬂonally ef cpnt af ne coupling the objectivg(1l) and use a stochastic gradient optimization.
layer and propose@onditional af ne coupling layede ned

as follows: logp (x;y) = log @g}x) +log @h@ézgf y) (4)

z3= X1, Zp= Xz exp(s(xi;y)) + t(Xa;y); +10g N (znjO;1) +log N (zauxj0; 1) + log p(y)

\t/;/hrc]artlaigeu:al_rnh?twcl)lrlc\jz;lt ?a\r/ﬁ Zc:assrr\]/alrlibée asna:jn id?"Connection to NF with Learnable Prior. We can treat the
onal input. S allows 1o Modet compiex depenaenciesyq . normalizing owh as a conditional prior distribu-

. . .S
8? jgg(;:g?;;’ erslai?ul)egnrg alj ttge same time keeps determlnatr?gn for the rstunconditional owf,. A simple example of

y pute. such a learnable prior is a Gaussian mixture model (GMM)
Semi-Conditional Architecture During the optimisation where each of mixture components is a Gaussian distribu-
of the objective(1), we need to evaluate marginal log- tion N (z;j y; y) corresponded to one of the class label
likelihood for unlabelled datp (x) = 521 p (xjy)p(y). Y. We compare a performance of the proposed conditional
However, this requirek forward passes. We address this normalizing ow and the Gaussian model as the conditional
issue with a proposeskemi-conditionahrchitecture where part (Section 4). A gold standard to nd parameters of
only a small number of deep layers are conditionedyon GMM is an expectation maximization algorithm (MacKay,
First, we mapx to z; andz,,, with an unconditional ow  2003). We also adapt this algorithm for our model (see
fw(x) and then map the deepest component® z, with  Appendix B) and compare it with direct optimization (Sec-
a conditionalh (z ;y). In this case, the Jacobian of the tion 4.2). We, however, did not nd a signi cant difference
unconditional owf,, is independent of, and we can pull between them.
it out of the sum and compute only once for all classes: 4. Experiments

_ @t .
logp (x) = log @éx) +10g N (ZauxjO; 1) (3 4.1. Toy Semi-Supervised Classi cation

X h(z : . We train proposed Semi-Conditional Normalizing Flow on
+ log = @gif 2 log N (znj0; 1) +log p(y) toy 2-dimensional problems: moons and concentric circles.
y=t For each problem the training dataset consists of 1000 ob-
Note, that we pass only the deepest compongnte the  jects and only 10 of them are labeled. We consider Gaussian
conditional ow h , instead of the hole vectdz; ; zux]. In mixture model and Glow as the conditional o . For
our experiments (Section 4.3) we found it to be an essentiahe unconditional owf we take Glow and recently pro-
part of our model. posed FFJORD (Grathwohl et al., 2018) models. We do
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Model Optimisation L Error, % Bits/dim
Kingma et al. (2014) VI 3 33 0.1
SCNFE-GLOW SGD 7 19 03 1.145 0.004
0 ewseo 3 29 01 L ool
SCNE-GMM SGD 7 142 24 1.143 0.011
09 ewsep 3 199 53 Lt 0%

Table 2: Test error and bits per dimension on MNIST dataset

(lower better). We use 100 labelled objects to train the mod-

els (averaging done over 3 different splits). SCNF stands

for Semi-Conditional Normalizing Flows with the same un-

conditional ow and different conditional parts. SGD is a Figure 2: Reconstructions of images using different number

direct gradient optimisation of the objective, EM-SGD is of deepest hidden componeits From top to bottom: 49,

an expectation maximisation algorithm, and VI is a varia98, 196, 392, 784. The latter one corresponds to real images

tional inferencel ¢ is an additional classi cation loss. We as this is the hole representation and the architecture is

found that the proposed SCNF-GLOW model outperformsnvertible. We zeroed the auxiliary componenfs, when

VAE-based approach (Kingma et al., 2014). perform the reconstruction. We found that the deepest 196
components provide quite accurate reconstructions.

not use multiscale architecture with dimension reduction as Dimension Test Error, %  Train Error, %
we have only 2-dimensional input. We observe that models 48 26 0
with Glow conditioning archive lower test error in compari- 08 20 0
son with Gaussian Mixture Model conditioning. To make 196 1.9 0
the fair comparison, we use roughly the same number of 392 61.4 0
parameters for each SCNF model. Quantitative results can 784 91.1 0

be seen at Tab. 1 and visualization at Appendix. D.
Table 3: Test and train erros on MNIST dataset for differ-
4.2. Semi-Supervised Classi cation on MNIST ent dimensions the deepest componentthat we pass to

conditional modeh (z ;y) (see Fig.1).
We demonstrate performance of the proposed model on (@) ( 9-1)

MNIST dataset (LeCun et al., 1998). The standard protocol

(Kingma et al., 2014) was used to model semi-supervise ; ; :

setting. We split the training set of size 60,000 into Ia-q'S' Dimension Reduction

belled and unlabelled parts. The size of labelled part equal$raining classi cation model in a high-dimensional space
to 100. The algorithm performance was averaged on 3vith only a few labelled examples may lead to over tting. In
different random splits of the dataset. We use Glow archiKingma et al. (2014) authors showed that semi-supervised
tecture (Kingma & Dhariwal, 2018) for an unconditional classi cation methods bene ts from using low-dimensional
part (see Appendix E). We reduce the size of an input withrepresentation of objects. In Section 3.2 we proposed a
a multi-scale architecture from 784 farto 196 forz; . natural dimension reduction technigue for our model. In this
For a conditional parh  we compare Glow architecture Section we examined an impact of the proposed technique.

with conditional af ne coupling layers (SCNF-GLOW) and i . .
Gaussian mixture model (SCNF-GMM). We compare ourWe use the SCNF-GLOW architecture from the previous

Semi-Conditional Normalizing Flow (SCNF) model with experiment '(Sect|on 4.2) and vary a dimension of the latent

: . representation; . The results can bee seen at Tab. 3. We
VAE-based approach (Kingma et al., 2014), which also uses . : ; .

. L : : nd that with the dimension growth the model is prone to
architecture with dimension reduction. : .
over tting and results in nearly random guess test perfor-

The results can be seen at Tab. 2. We observe that theance. To demonstrate an information that remains in the
proposed SCNF model with Glow-based conditional partatent representation we reconstruct an image ugirgnd
outperforms VAE-based model. The GMM conditioning zeroing the auxiliary componentg,x. The correspond-
seems to be not suf ciently expressive for this problem anding reconstructions can be found at Fig. 2. Surprisingly,
shows much poorer performance. We also did not nd anyreconstructions from 49 deepest components do not look
difference between the performance of SGD and EM-SGDike original images, while conditional ow is still able to

optimization algorithms. achieve low test error on test set.






