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Abstract
This paper proposes a semi-conditional normaliz-
ing flow model for semi-supervised learning. The
model uses both labelled and unlabeled data to
learn an explicit model of joint distribution over
objects and labels. Semi-conditional architecture
of the model allows us to efficiently compute a
value and gradients of the marginal likelihood for
unlabeled objects. The conditional part of the
model is based on a proposed conditional cou-
pling layer. We demonstrate a performance of
the model for semi-supervised classification prob-
lem on different datasets. The model outperforms
the baseline approach based on variational auto-
encoders on MNIST dataset.

1. Introduction
Modern supervised machine learning approaches require
large amount of labelled data. However, large labelled
datasets are not always available and cannot be collected
without additional effort. In many fields, on the other hand,
unlabelled data is accessible. This makes semi-supervised
learning an important field of machine learning research.
Semi-supervised methods aim to employ unlabelled data to
achieve a competitive performance of supervised models
while using only a few labelled examples. Previous work
on this topic includes Joachims (1999); Blum et al. (2004);
Rosenberg et al. (2005). These methods, however, poorly
scale on huge unlabelled datasets and high dimensional data
Zhu (2005); Kingma et al. (2014).

Recent advances in unsupervised learning, specifically deep
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generative models (Kingma & Welling, 2013; Goodfellow
et al., 2014; Dinh et al., 2014; Van den Oord et al., 2016),
allow to model complex data distribution pθ(x). Modern
methods for semi-supervised learning (Kingma et al., 2014;
Springenberg, 2015; Salimans et al., 2016) actively em-
ploy deep generative models to learn from unlabeled data.
The common approach suggests to model joint distribution
pθ(x, y) = pθ(x|y)p(y) over objects x and labels y, where
pθ(x|y) is a conditional generative model. The joint distri-
bution allows inferring class-label distribution pθ(y|x) that
is used to make a prediction for a supervised problem.

Kingma et al. (2014) proposed a semi-supervised learning
method that is based on variational auto-encoders (Kingma
& Welling, 2013). This approach scales well on large
datasets and provides flexible generative models for high-
dimensional data. However, direct likelihood optimization
in this case is intractable, and it is usually tackled by meth-
ods for approximate variational inference (Paisley et al.,
2012; Hoffman et al., 2013; Ranganath et al., 2014).

Recently a new family of deep generative models called nor-
malizing flows has been proposed (Rezende & Mohamed,
2015). Normalizing flows model data by a deterministic
invertible transformation of a simple random variable, e.g.
standard normal. The framework provides a tractable like-
lihood function and allows its direct optimization. Data
distribution in this case can be inferred using change of
variables formula by computing Jacobian determinant of
the transformation. Recent advances in this field (Kingma
et al., 2016; Dinh et al., 2016; Kingma & Dhariwal, 2018;
Grathwohl et al., 2018; Berg et al., 2018) provide a number
of flexible architectures with tractable and efficient determi-
nant computation.

It has been shown that dimension reduction is crucial for
semi-supervised methods (Kingma et al., 2014). Unfortu-
nately, normalizing flows have a latent representations of
the same dimension as input data. However, it was shown
that a multi-scale architecture (Dinh et al., 2016) produces
latent representation, in which only a small part of com-
ponents stores consistent semantic information about input
data. That opens a possibility to use this kind of architecture
for dimension reduction.

In this paper, we propose Semi-Conditional Normalizing
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Flow — a new normalizing �ow model that is suitable
for semi-supervised classi�cation problem. The proposed
model provides a tractable likelihood estimation for both
labeled and unlabeled data. The semi-conditional architec-
ture (Section 3.3) allows us to effectively compute value and
gradients of a marginal likelihoodp� (x). The conditional
distributionp� (xjy) is modelled by a proposedconditional
coupling layer, that is built on the top of the original cou-
pling layer (Dinh et al., 2016). For dimension reduction, we
adapt a multi-scale architecture, and we �nd it to be a crucial
component of our model. In experiments, we demonstrate
the empirical performance of the model for semi-supervised
classi�cation problem. We also �nd that the proposed model
incorporates a data obfuscation mechanism by design, that
may be useful for semi-supervised fair learning.

2. Semi-Supervised Learning with
Deep Generative Models

We consider semi-supervised classi�cation problem with
partly labelled dataset. Let us denote an object asx i 2 Rd

and a corresponding class label asyi 2 f 1; : : : ; K g. We
denote the set of labelled and unlabelled objects asL andU
respectively. Generative model with parameters� de�nes
joint likelihood p� (x; y) of an object and its label. The
objective function for this model is a log-likelihood of the
dataset:

L (� ) =
X

(x i ;y i )2 L

logp� (x i ; yi ) +
X

x j 2 U

logp� (x j ); (1)

wherep� (x j ) =
P K

k=1 p� (x j ; y= k) is a marginal likeli-
hood for unlabelled object. The joint likelihoodp� (x; y)
is often parameterized asp� (x; y) = p� (xjy)p(y), where a
prior p(y) is a uniform categorical distribution and a condi-
tional distributionp� (xjy) is de�ned by a conditional gener-
ative model. On the test stage, the prediction of the model –
a posterior distribution over labelsp� (yjx) – can be found
asp� (yjx) = p� (x;y )

p� (x ) .

Kingma et al. (2014) proposed to use variational auto-
encoders (Kingma & Welling, 2013) as the conditional gen-
erative modelp� (xjy). However, such parametrization, does
not allow to maximize the objective(1) directly and obliges
to use stochastic optimization of a variational lower bound,
that does not guarantee convergence to the maximum of(1).
Additionally, the posterior predictive distributionp� (yjx)
cannot be computed in a closed form and needs a time-
consuming sample-based estimation.

We present a new way to model the conditional distribution
p� (xjy) using normalizing �ows (Rezende & Mohamed,
2015). In our approach we have access to all required distri-
butions to maximize log-likelihood of the data(1) directly
and to compute exact posteriorp� (yjx) see (Section 3.3).

3. Semi-Conditional Normalizing Flows

3.1. Normalizing Flows

Normalizing �ows model data as a deterministic and invert-
ible transformationx = g� (z) of a simple random variable
z, e.g. standard normal. We denote an inverse transforma-
tion g� 1

� asf � , i.e. this inverse function maps datax to
latent representationz. Log-density of this model can be
calculated using change of variable formula:

logp� (x) = log

�
�
�
�
@f� (x)
@xT

�
�
�
� + log p(z); (2)

where @f� (x )
@xT is a Jacobian of the transformationf � and

prior p(z) is a standard normal distributionN (zj0; I ). The
transformationf � has to be bijective and has a tractable
Jacobian determinant. A number of �ow architectures (Dinh
et al., 2014; Kingma et al., 2016; Kingma & Dhariwal, 2018)
have been proposed recently. These architectures are based
on operations with simple form determinant of Jacobian.
For example, Real NVP architecture proposed by Dinh et al.
(2016) is based on an af�ne coupling layer. This layer splits
an input variablex into two non-overlapping partsx1; x2

and applies af�ne transformation based on the �rst partx1

to the otherx2 in the following way:

z1 = x1; z2 = x2 � exp(s(x1)) + t(x1);

wheres; t are arbitrary neural networks. This transforma-
tion has a simple triangular Jacobian, and the use of neural
networks allows to model complex non-linear dependencies.

3.2. Dimension Reduction with Normalizing Flows

It has been shown that performance of a semi-supervised
model bene�ts from using low-dimensional data represen-
tation (Kingma et al., 2014). We also observe this effect
in our experiments (Section 4.3). Unfortunately, normal-
izing �ows preserve a dimensionality ofz equal tox one.
However, modern normalizing �ow models have multiscale
structure, where differnet parts of the latent representation
z pass different number of transformations. The part that
passes all transformations contains most of semantic infor-
mation about an input object (Dinh et al., 2016), we will
refer to this part aszf and to the other components aszaux .

3.3. Semi-Conditional Normalizing Flow

Semi-supervised methods based on generative models re-
quire conditional density estimation (Section 2). In order
to model conditional distributionp� (xjy) rather then just
p� (x) we have to condition the transformationf � on y. Per-
haps, the simplest way would be to use different �ows for
each class (Trippe & Turner, 2018). Nevertheless, this ap-
proach has high memory cost and does not share weights
between classes. In (Kingma et al., 2016) authors proposed
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Figure 1: The proposed semi-conditional architecture con-
sists of two parts: a large unconditional �owf w (x), and a
relatively small conditional �owh� (zf ; y). The uncondi-
tional �ow f w (x) is based on a multi-scale architecture and
maps an inputx into a low-dimensionalzf and an auxiliary
vectorzaux . The conditional �owh� (zf ; y) maps the low-
dimensional vectorzf to zh = h� (zf ; y). The architecture
allows to computep� (x)= Ey p� (x; y) with a single forward
pass of the computationally expensive �owf � and one pass
of the inexpensive �owh� for every class labely.

a memory ef�cient conditional autoregressive architecture.
Unfortunately, sequential structure of autoregressive models
leads to high computational cost. Therefore, we adapt a
more memory and computationally ef�cient af�ne coupling
layer and propose aconditional af�ne coupling layerde�ned
as follows:

z1 = x1; z2 = x2 � exp(s(x1; y)) + t(x1; y);

where neural networkss; t have a class variable as an addi-
tional input. This allows to model complex dependencies
on the class variable and at the same time keeps determinant
of Jacobian easy to compute.

Semi-Conditional Architecture During the optimisation
of the objective(1), we need to evaluate marginal log-
likelihood for unlabelled datap� (x) =

P K
y=1 p� (xjy)p(y).

However, this requiresK forward passes. We address this
issue with a proposedsemi-conditionalarchitecture where
only a small number of deep layers are conditioned ony.
First, we mapx to zf andzaux with an unconditional �ow
f w (x) and then map the deepest componentszf to zh with
a conditionalh� (zf ; y). In this case, the Jacobian of the
unconditional �owf w is independent ofy, and we can pull
it out of the sum and compute only once for all classes:

logp� (x) = log
�
�
� @fw (x )

@xT

�
�
� + log N (zaux j0; I ) (3)

+
KX

y=1

log
�
�
� @h� (zf ;y )

@zTf

�
�
� + log N (zh j0; I ) + log p(y)

Note, that we pass only the deepest componentszf to the
conditional �ow h� , instead of the hole vector[zf ; zaux ]. In
our experiments (Section 4.3) we found it to be an essential
part of our model.

f w h�
Moons Circles

Error,% NLL Error,% NLL

GLOW
GLOW 0.6� 0.4 1.11� 0.02 5.0� 1.9 1.68� 0.13
GMM 1.2 � 1.2 1.15� 0.01 14.2� 9.0 1.28� 0.15

FFJORD
GLOW 0.3� 0.2 1.12� 0.03 6.2� 2.2 1.7� 0.2
GMM 5.3 � 6.3 1.15� 0.06 25� 2 0.97� 0.05

Table 1: Test accuracy and negative log-likelihood (NLL)
for different models on two toy datasets (see visualization at
Appendix. D).f � corresponds to the unconditional part and
h� to the conditional part of SCNF model (Fig. 1). GMM
stands for Gaussian mixture model, and Glow is a �ow-
based model. Glow conditional �owh� in terms of test error
outperforms GMM for different types of unconditional �ow
on both datasets. Taking into account values of uncertainties,
we see that unconditional FFJORD gives roughly the same
test error and negative log-likelihood as unconditional Glow.

3.4. Learning of Semi-Conditional Normalizing Flows

The parameters� = f w; � g of the model(4) are esti-
mated via maximum likelihood approach(1). Normaliz-
ing �ows provide us with tractable log-likelihood func-
tion logp� (x; y) (4) along with marginal log-likelihood
logp� (x). Therefore, we can compute a gradientr � L (� ) of
the objective(1) and use a stochastic gradient optimization.

logp� (x; y) = log
�
�
� @fw (x )

@xT

�
�
� + log

�
�
� @h� (zf ;y )

@zTf

�
�
� (4)

+ log N (zh j0; I ) + log N (zaux j0; I ) + log p(y)

Connection to NF with Learnable Prior. We can treat the
second normalizing �owh� as a conditional prior distribu-
tion for the �rst unconditional �owf w . A simple example of
such a learnable prior is a Gaussian mixture model (GMM)
where each of mixture components is a Gaussian distribu-
tion N (zf j� y ; � y ) corresponded to one of the class label
y. We compare a performance of the proposed conditional
normalizing �ow and the Gaussian model as the conditional
part (Section 4). A gold standard to �nd parameters of
GMM is an expectation maximization algorithm (MacKay,
2003). We also adapt this algorithm for our model (see
Appendix B) and compare it with direct optimization (Sec-
tion 4.2). We, however, did not �nd a signi�cant difference
between them.

4. Experiments

4.1. Toy Semi-Supervised Classi�cation

We train proposed Semi-Conditional Normalizing Flow on
toy 2-dimensional problems: moons and concentric circles.
For each problem the training dataset consists of 1000 ob-
jects and only 10 of them are labeled. We consider Gaussian
mixture model and Glow as the conditional �owh� . For
the unconditional �owf � we take Glow and recently pro-
posed FFJORD (Grathwohl et al., 2018) models. We do
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Model Optimisation L clf Error, % Bits/dim

Kingma et al. (2014) VI 3 3.3 � 0.1 -

SCNF-GLOW
(Ours)

SGD 7 1.9� 0.3 1.145� 0.004

EM-SGD
3 2.0� 0.1 1.151� 0.010
7 1.9� 0.0 1.146� 0.002

SCNF-GMM
(Ours)

SGD 7 14.2� 2.4 1.143� 0.011

EM-SGD
3 16.9� 5.3 1.141� 0.006
7 13.4� 2.8 1.145� 0.005

Table 2: Test error and bits per dimension on MNIST dataset
(lower better). We use 100 labelled objects to train the mod-
els (averaging done over 3 different splits). SCNF stands
for Semi-Conditional Normalizing Flows with the same un-
conditional �ow and different conditional parts. SGD is a
direct gradient optimisation of the objective, EM-SGD is
an expectation maximisation algorithm, and VI is a varia-
tional inference.L clf is an additional classi�cation loss. We
found that the proposed SCNF-GLOW model outperforms
VAE-based approach (Kingma et al., 2014).

not use multiscale architecture with dimension reduction as
we have only 2-dimensional input. We observe that models
with Glow conditioning archive lower test error in compari-
son with Gaussian Mixture Model conditioning. To make
the fair comparison, we use roughly the same number of
parameters for each SCNF model. Quantitative results can
be seen at Tab. 1 and visualization at Appendix. D.

4.2. Semi-Supervised Classi�cation on MNIST

We demonstrate performance of the proposed model on
MNIST dataset (LeCun et al., 1998). The standard protocol
(Kingma et al., 2014) was used to model semi-supervised
setting. We split the training set of size 60,000 into la-
belled and unlabelled parts. The size of labelled part equals
to 100. The algorithm performance was averaged on 3
different random splits of the dataset. We use Glow archi-
tecture (Kingma & Dhariwal, 2018) for an unconditional
part (see Appendix E). We reduce the size of an input with
a multi-scale architecture from 784 forx to 196 for zf .
For a conditional parth� we compare Glow architecture
with conditional af�ne coupling layers (SCNF-GLOW) and
Gaussian mixture model (SCNF-GMM). We compare our
Semi-Conditional Normalizing Flow (SCNF) model with
VAE-based approach (Kingma et al., 2014), which also uses
architecture with dimension reduction.

The results can be seen at Tab. 2. We observe that the
proposed SCNF model with Glow-based conditional part
outperforms VAE-based model. The GMM conditioning
seems to be not suf�ciently expressive for this problem and
shows much poorer performance. We also did not �nd any
difference between the performance of SGD and EM-SGD
optimization algorithms.

Figure 2: Reconstructions of images using different number
of deepest hidden componentszf . From top to bottom: 49,
98, 196, 392, 784. The latter one corresponds to real images
as this is the hole representation and the architecture is
invertible. We zeroed the auxiliary componentszaux when
perform the reconstruction. We found that the deepest 196
components provide quite accurate reconstructions.

Dimension Test Error, % Train Error, %

48 2.6 0
98 2.0 0
196 1.9 0
392 61.4 0
784 91.1 0

Table 3: Test and train erros on MNIST dataset for differ-
ent dimensions the deepest componentszf that we pass to
conditional modelh� (zf ; y) (see Fig.1).

4.3. Dimension Reduction

Training classi�cation model in a high-dimensional space
with only a few labelled examples may lead to over�tting. In
Kingma et al. (2014) authors showed that semi-supervised
classi�cation methods bene�ts from using low-dimensional
representation of objects. In Section 3.2 we proposed a
natural dimension reduction technique for our model. In this
Section we examined an impact of the proposed technique.

We use the SCNF-GLOW architecture from the previous
experiment (Section 4.2) and vary a dimension of the latent
representationzf . The results can bee seen at Tab. 3. We
�nd that with the dimension growth the model is prone to
over�tting and results in nearly random guess test perfor-
mance. To demonstrate an information that remains in the
latent representation we reconstruct an image usingzf and
zeroing the auxiliary componentszaux . The correspond-
ing reconstructions can be found at Fig. 2. Surprisingly,
reconstructions from 49 deepest components do not look
like original images, while conditional �ow is still able to
achieve low test error on test set.




