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Abstract

The sampling of probability distributions speci-

fied up to a normalization constant is an important

problem in machine learning and statistical me-

chanics. Here we propose Stochastic Normaliz-

ing Flows (SNF) which combine trainable invert-

ible networks with stochastic sampling methods

such as Markov Chain Monte Carlo (MCMC) or

Langevin Dynamics (LD). We show that stochas-

ticity overcomes expressivity limitations of in-

vertible networks, whereas the trainable invert-

ible networks improve sampling efficiency over

pure MCMC/LD. By invoking ideas from non-

equilibrium statistical mechanics we derive an

efficient training procedure by which both the

sampler’s and the flow’s parameters can be opti-

mized end-to-end, and exact importance weights

of flow samples can be computed without hav-

ing to marginalize out the randomness of the

stochastic blocks. We illustrate the representa-

tional power, sampling efficiency and asymptotic

correctness of SNFs on benchmarks and a molec-

ular model.

1. Introduction

A common problem in machine learning and statistics with

important applications in physics is the generation of asymp-

totically unbiased samples from a target distribution defined

up to a normalization constant: µX(x) ∝ exp(−u(x)).

Sampling of such unnormalized distributions is often done

with Markov Chain Monte Carlo (MCMC) or other stochas-

tic sampling methods (Frenkel & Smit, 2001). Such meth-

ods are asymptotically unbiased, but might get stuck in local
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energy minima due to inefficient proposals.

Normalizing flows (NFs) (Tabak et al., 2010; Tabak &

Turner, 2013; Dinh et al., 2014; Rezende & Mohamed, 2015;

Dinh et al., 2016; Papamakarios et al., 2019) combined with

importance sampling methods are an alternative approach

that enjoys growing interest in molecular and material sci-

ences and nuclear physics (Müller et al., 2018; Li & Wang,

2018; Noé et al., 2019; Köhler et al., 2019; Albergo et al.,

2019; Nicoli et al., 2019). NFs are learnable invertible func-

tions pushing forward a probability density over a latent or

“prior” space Z towards target space the X . Utilizing the

change of variable rule these models provide exact densi-

ties of generated samples allowing to train them by either

maximizing the likelihood on data (ML) or minimizing the

Kullback-Leibler divergence (KL) towards a target distribu-

tion.

Let FZX be such a map and its inverse FXZ = F−1
ZX . We

can consider it as composition of T invertible transformation

layers F0, ..., FT with intermediate states yt given by:

yt+1 = Ft(yt) yt = F−1
t (yt+1) (1)

We call Z (prior) samples z = y0 and X (target) samples

x = yT. We suppose each transformation layer is differen-

tiable with a Jacobian determinant |detJt(y)|. This allows

to apply the change of variable rule:

pt+1(yt+1) = pt+1 (Ft(yt)) = pt(yt) |detJt(yt)|
−1

(2)

As we often work with log-densities, we abbreviate the

log Jacobian determinant as: ∆St = log |detJt(y)|. The

log Jacobian determinant of the entire flow is defined by

∆SZX =
∑

t ∆St(yt) and correspondingly ∆SXZ for the

inverse flow.

Unbiased sampling with Boltzmann Generators is par-

ticularly important for applications in physics and chemistry

where unbiased expectation values are required (Li & Wang,

2018; Noé et al., 2019; Albergo et al., 2019; Nicoli et al.,

2019). A Boltzmann generator utilizing an NF achieves this

by (i) generating one-shot samples x ∼ pX(x) from the

flow and (ii) a reweighing/resampling procedure respecting

weights

w(x) ∝ exp (−uZ (FXZ(x))− log ρX(x) + ∆SXZ(x)) ,
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turning these one-shot samples into asymptotically unbiased

samples. Reweighing/resampling methods utilized in this

context are e.g. Importance Sampling (Müller et al., 2018;

Noé et al., 2019) or Neural MCMC (Li & Wang, 2018;

Albergo et al., 2019; Nicoli et al., 2019).

Training NFs are usually trained by minimizing the for-

ward KL divergence KL [pX‖µX ] (energy minimization)

and/or the backward KL divergence KL [µX‖pX ] (density

estimation).

As can be shown1, this corresponds to maximizing the for-

ward / backward weights of samples drawn from pX/µX .

Topological problems of NFs A major caveat of sam-

pling with exactly invertible functions for physical problems

are topological constraints (Falorsi et al., 2018; 2019). Prob-

lems arising from these constraints can be reduced by using

mixtures of flows (Dinh et al., 2019; Cornish et al., 2019)

or augmenting the base space (Dupont et al., 2019) at the

cost of limiting expressibility or losing the exact density.

Contributions We show how NFs can be combined with

intermediate stochastic sampling blocks into arbitrary se-

quences and how this sequence can be jointly optimized

efficiently. This relaxes topological constraints and improve

expressivity of utilized NFs. It further improves sampling

efficiency over pure stochastic sampling as the flow’s and

sampler’s parameters can be jointly optimized.

We apply the model to benchmark problems as well as to

the recently introduced problem of asymptotically unbiased

sampling of molecular structures with flows (Noé et al.,

2019) and show that it significantly improves sampling the

multi-modal torsion angle distribution.

2. Stochastic normalizing flows

A SNF is a sequence of T stochastic and deterministic trans-

formations. We sample z = y0 from the prior µZ , and

generate a forward path (y1, . . . ,yT ) resulting in a pro-

posal yT (Fig. 1). Correspondingly, latent space samples

can be generated by starting from a sample x = yT and in-

voking the backward path (yT−1, . . . ,y0). The conditional

forward / backward path probabilities are

Pf (z = y0 → x = yT ) =

T−1
∏

t=0

qt(yt → yt+1) (3)

Pb(x = yT → y0 = z) =

T−1
∏

t=0

q̃t(yt+1 → yt) (4)

where yt+1|yt ∼ qt(yt → yt+1) and yt|yt+1 ∼
q̃t(yt+1 → yt) denote the forward / backward sampling

1All derivations can be found in the Suppl. Material.
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Figure 1. Schematic for Stochastic Normalizing Flow (SNF).

An SNF transform a tractable prior µZ(z) ∝ exp(−u0(z)) to

a complicated target distribution µX(x) ∝ exp(−u1(x)) by a

sequence of deterministic invertible transformations (flows, grey

boxes) and stochastic dynamics (sample, ochre) that sample with

respect to a guiding potential uλ(x). SNFs can be run in forward

mode (black) and reverse mode (blue).

density at step t respectively. If step t is a deterministic

transformation Ft this simplifies as

yt+1 ∼ δ (yt+1 − Ft(yt)) , yt ∼ δ
(

yt − F−1
t (yt+1)

)

.

While the probability of generating a sample x from a NF

can be computed by Eq. (2), this is not possible for SNFs.

The marginal probability of generating x involves integrat-

ing over all paths that end in x:

pX(x) =

∫

µZ(y0)Pf (y0 → yT ) dy0 · · · dyT−1. (5)

This integral is generally intractable, thus a feasible training

method must avoid Eq. (5).

Following (Nilmeier et al., 2011), we can draw samples x ∼
µX(x) by running Metropolis-Hastings moves in the path-

space of (z = y0, ...,yT = x) if we select the unconditional

backward path probability µX(x)Pb(x → z) as the target

distribution and the unconditional forward path probability

µZ(z)Pf (z → x) as the proposal density. Since we sample

paths independently, it is simpler to assign an unnormalized

importance weight proportional to the acceptance ratio to

each sample path from z = y0 to x = yT :

w(z → x) = euZ(z)−uX(x)+
∑

t ∆St(yt)

∝
µX(x)Pb(x → z)

µZ(z)Pf (z → x)
(6)
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where

∆St = log
q̃t(yt+1 → yt)

qt(yt → yt+1)
(7)

denotes the forward-backward probability ratio of step t,
and corresponds to the usual change of variable formula in

NF for deterministic transformation steps. These weights

allow asymptotically unbiased sampling and training of

SNFs while avoiding eq. (5). By changing denominator and

numerator in (6) we can alternatively obtain the backward

weights w(x → z).

SNF training As in NFs, the parameters of a SNF can be

optimized by minimizing the Kullback-Leibler divergence

between the forward and backward path probabilities, or al-

ternatively maximizing forward and backward path weights

as long as we can compute ∆St:

JKL = EµZ(z)Pf (z→x) [− logw(z → x)]

= KL (µZ(z)Pf (z → x)||µX(x)Pb(x → z)) + const.

In the ideal case of JKL = 0, all paths have the same weight

w(z → x) = 1 and independent and identically distributed

sampling of µX can be achieved. Accordingly, we can

maximize the likelihood of the generating process on data

drawn from µX by minimizing:

JML = EµX(x)Pb(x→z) [− logw(x → z)]

= KL (µX(x)Pb(x → z)||µZ(z)Pf (z → x)) + const.

Asymptotically unbiased sampling As stated in the the-

orem below, SNFs are Boltzmann Generators: We can gen-

erate asymptotically unbiased samples of x ∼ µX(x) by

performing importance sampling or Neural MCMC using

the path weight w(zk → xk) of each path sample k.

Theorem 1. Let O be a function over X . An asymptotically

unbiased estimator is given by

Ex∼µX
[O(x)] ≈

∑

k w(zk → xk)O(xk)
∑

k w(zk → xk)
. (8)

if paths are drawn from the forward path distribution

µZ(z)Pf (z → x).

3. Implementing SNFs in practice

We focus on the use of SNFs as samplers of µX(x) for

problems where the target energy uX(x) is known. Stochas-

tic blocks like MCMC / LD make updates of the current

state y with respect to some potential uλ(y) such that they

will asymptotically sample from µλ(yt) ∝ exp(−uλ(yt)).
Here we define these intermediate potentials by interpolat-

ing between prior and target potentials using λ ∈ [0, 1] as it

is done in annealed importance sampling (Neal, 1998).

uλ(y) = (1− λ)uZ(y) + λuX(y), (9)

Deterministic Flow layers use trainable invertible net-

works to approximate the partial density transformation

between adjacent λ steps. For training and reweighting,

deterministic blocks can be treated the same as stochastic

blocks by realizing:

∆St = log |detJt(yt)| . (10)

Langevin dynamics Overdamped Langevin dynamics us-

ing an Euler discretization with time step ǫt is given by

yt+1 = yt − ǫt∇uλ(yt) +
√

2ǫt/βηt (11)

where p(ηt) = N (0, I). The backward step yt+1 → yt is

realized under these dynamics with the backward noise re-

alization: η̃t =
√

βǫt
2 [∇uλ(yt) +∇uλ(xt+1)]− ηt. The

log path probability ratio is, (Nilmeier et al., 2011):

∆St = −
1

2

(

‖η̃t‖
2 − ‖ηt‖

2
)

Markov Chain Monte Carlo Any MCMC method with a

forward and backward proposal densities qt = q̃t that satisfy

the detailed balance condition e−uλ(yt)qt(yt → yt+1) =
e−uλ(yt+1)qt(yt+1 → yt) w.r.t. the interpolated density

µλ(y) have the log path probability ratio

∆St = uλ(yt+1)− uλ(yt). (12)

This includes Metropolis-Hastings and Hamiltonian MC.

4. Results

Representational power versus sampling efficiency

We first illustrate that SNFs can improve the representational

power of deterministic NFs while having better sampling

efficiency than pure MCMC. To this end we use images to

define complex two-dimensional densities (Fig. 2a-c, “Ex-

act”) as target densities µX(x) to be sampled. We compare

three flows: (i) a normalizing flow RealNVP layers, (ii) pure

MCMC along the annealing path, (iii) a SNF with RealNVP

layers prior to MCMC steps such that number of NF layers

/ MCMC steps equate to those of (i) and (ii) respectively.

Qualitatively, we can see that pure RealNVP NFs lack repre-

sentational power to resolve fine details, while pure MCMC

suffers from getting stuck in local minima. SNFs achieve

high-quality sampling as soon as the former two are com-

bined and jointly optimized (Fig. 2 a-c). Quantitatively, we

compare the KL divergence between generated densities

pX(x) and exact densities µX(x). Both normalizing flows

and SNFs improve with greater depth, but SNFs achieve

significantly lower KL divergence at a fixed network depth.

Moreover, SNFs have higher statistical efficiency than pure

Metropolis MC flows.
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c

ed
RNVP Metropolis RNVP+Metropolis Exact

RNVP +

Metropolis

RNVP

Figure 2. Sampling of two-dimensional densities. a-c) Sam-

pling of image densities with different methods. Columns: (1)

NF with RealNVP layers, (2) Metropolis MC sampling, (3) SNF

combining (1+2), (4) Unbiased sample from exact density. d-e)

Compare expressivity and statistical efficiency by showing KL

divergence (mean and standard deviation over 3 training runs) be-

tween samples and true density from Fig. 2. d) Comparison of NF

(black) and SNF (red) as a function of the number of RealNVP

transformations. Number of MC steps in SNF is fixed to 50. e)

Comparison of pure MCMC (black) and SNF (red) as a function

of the number of MC steps. Number of RealNVP transformations

in SNF is fixed to 10.

Table 1. Alanine dipeptide: KL-divergences of RNVP flow and

SNF (RNVP+MCMC) between generated and target distributions

for all multimodal torsion angles. Mean and standard deviation

from 3 independent runs.

KL-DIV. φ γ1 ψ γ2 γ3

RNVP
1.69

±0.03
3.82

±0.01
0.98

±0.03
0.79

±0.03
0.79

±0.09

SNF
0.36

±0.05
0.21

±0.01
0.27

±0.03
0.12

±0.02
0.15

±0.04

Alanine dipeptide In a second experiment we evaluate

SNFs on density estimation and sampling of molecular struc-

tures from a simulation of the alanine dipeptide molecule

in vacuum (Fig. 3) - a 66 dimensional molecule with multi-

modal torsion angle density. For the SNF we combine

RealNVP layers with MCMC sampling with an initial inter-

nal coordinate transformations as introduced in (Noé et al.,

2019). This is compared to a pure normalizing flow based on

RealNVP layers which are currently state of the art for this

kind of problem. Fig. 3a shows random structures sampled

by the trained SNF. Fig. 3b shows marginal densities in all

five multimodal torsion angles (backbone angles φ, ψ and

methyl rotation angles γ1, γ2, γ3). While the RealNVP flow

misses many modes, SNFs resolves the multimodal struc-

ture and achieves a lower KL divergence between generated

and target marginal distributions (Table 1).

a

b 2.5 0.0 2.5

de
ns

ity

2.5 0.0 2.5

1

2.5 0.0 2.5 2.5 0.0 2.5

2

2.5 0.0 2.5

3
Target
RNVP
RNVP + MCMC

Figure 3. Alanine dipeptide sampled with NFs and SNFs. a) One-

shot SNF samples of alanine dipeptide structures. b) neg. log.

marginal densities in 5 unimodal torsion angles (top) and all 5

multimodal torsion angles (bottom).

5. Related work

Most importantly to this work is (Nilmeier et al., 2011)

which provides the theoretical framework for computing

path probability ratios for fixed deterministic and stochastic

protocols which we extended to SNFs.

Furthermore related is the work of (Sohl-Dickstein et al.,

2015; Chen et al., 2017; Gu et al., 2019; Hodgkinson et al.,

2020) which all propose learnable stochastic processes de-

signed for density estimation and/or sampling. Our work

differs in so far that it is the only framework providing the

combination of arbitrary learnable sampling/transformation

blocks together with guarantees for asymptotically unbiased

sampling and an efficient and exact training mechanism.

In work like (Salimans et al., 2015; Levy et al., 2017; Song

et al., 2017; Hoffman et al., 2019; Hoffman, 2017) it has

been shown that learnable proposals combined with stochas-

ticity can improve sampling efficiency. Yet, such approaches

do neither provide an exact reweighing scheme nor a way

to optimize arbitrary transformation / sampling steps end-

to-end efficiently.

Finally, there is work on modeling stochastic processes by

combining learnable transformations and intermediate noise

(Tzen & Raginsky, 2019; Jia & Benson, 2019; Liu et al.,

2019; Li et al., 2020). These methods however are not

designed for marginal density estimation / asymptotically

unbiased sampling.

6. Conclusions

We have introduced stochastic normalizing flows (SNFs)

that combine both stochastic processes and invertible deter-

ministic transformations into a single learning framework.

By leveraging nonequilibrium statistical mechanics we show

that SNFs can efficiently be trained to sample asymptotically

unbiased from target densities. This can be done by utilizing

path probability ratios and avoiding intractabe marginaliza-
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tion. Besides possible applicability in classical machine

learning domains such as variational and Bayesian infer-

ence, we believe that the latter property can make SNFs

a key component in the efficient sampling of many-body

physics systems. In future research we aim to apply SNFs

with many stochastic sampling steps to accurate large-scale

sampling of molecules.
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Supplementary Material

Training normalizing flows

Energy-based training and forward weight maximization If the target density µX is known up to a constant ZX , we

minimize the forward KL divergence between the generated and the target distribution.

KL(pX ‖ µX) (13)

= Ex∼pX(x) [log pX(x)− logµX(x)]

= Ez∼µZ(z) [uX(FZX(z))−∆SZX(z)] + const.

The importance weights wrt the target distribution can be computed as:

wX(x) = exp (−uX (FZX(z)) + uZ(z) + ∆SZX(z)) ∝
µX(x)

pX(x)
. (14)

As Ez∼pZ(z) [uZ(z)] is a constant, we can equivalently minimize KL or maximize log weights:

maxEz∼pZ(z) [logwX(x)] = minKL(pX ‖ µX), (15)

Maximum likelihood and backward weight maximization The backward KL divergence KL(µX ‖ pX) is not always

tractable as µX(x) can be difficult to sample from. Replacing µX(x) by the empirical data distribution ρX(x), the KL

becomes a negative log-likelihood:

NLL(ρX ‖ pX) (16)

= Ex∼ρX(x) [uZ(FXZ(x))−∆SXZ(x)] + const.

Using Ex∼ρX(x) [− log ρX(x)] = const and the weights:

wZ(z) = exp (−uZ (FXZ(x))− log ρX(x) + ∆SXZ(x)) ∝
µZ(z)

pZ(z)
,

maximum likelihood equals log weight maximization:

maxEx∼ρX(x) [logwZ(z)] = minNLL(ρX ‖ pX). (17)

Proof of theorem 1 (unbiased sampling with SNF importance weights)

Considering

EµX
[O] =

∫

µX(x)O(x)dx

=

∫∫

µX(x)Pb(x → z)O(x)dzdx

=

∫∫

µZ(z)Pf (z → x)

·

[

µX(x)Pb(x → z)

µZ(z)Pf (z → x)
O(x)

]

dzdx

= Ef

[

µX(x)Pb(x → z)

µZ(z)Pf (z → x)
O(x)

]

,

where Ef denotes the expectation over forward path realizations. In practice, we do not know the normalization constant

of µX and we therefore replace
µX(x)Pb(x→z)
µZ(z)Pf (z→x) by the unnormalized path weights in Eq. (6). Then we must normalize the

estimator for expectation values, obtaining:

∑N
k=1 w(zk → xk)O(xk)
∑N

k=1 w(zk → xk)

p
→ Eµ[O]

which converges towards Eµ[O] with N → ∞ according to the law of large numbers.
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Derivation of the deterministic layer probability ratio

In order to work with delta distributions, we define δσ(x) = N (x;0, σI), i.e. a Gaussian normal distribution with mean 0

and variance σ and then consider the limit σ → 0+. In the case where σ > 0, by defining

qσt (yt → yt+1) = δσ(yt+1 − Ft(yt)),

and

q̃σt (yt+1 → yt) =
pt(yt)q

σ
t (yt → yt+1)

∫

pt(y)qσt (y → yt+1)dy

=
pt(yt)δ

σ(yt+1 − Ft(yt))
∫

pt(y)δσ(yt+1 − Ft(y))dy
,

we have
q̃σt (yt+1 → yt)

qσt (yt → yt+1)
=

pt(yt)
∫

pt(y)δσ(yt+1 − F (y))dy
,

where pt(yt) denotes the marginal distribution of yt. By considering

lim
σ→0+

∫

pt(y)δ
σ(yt+1 − Ft(y))dy

= lim
σ→0+

∫

pt(F
−1
t (y′))δσ(yt+1 − y′)

∣

∣

∣

∣

det

(

∂F−1
t (y′)

∂y′

)∣

∣

∣

∣

dy′

= pt(F
−1
t (yt+1))

∣

∣

∣

∣

det

(

∂F−1
t (yt+1)

∂yt+1

)
∣

∣

∣

∣

= pt(yt) |detJt(yt)|
−1

and using the definition of ∆St in terms of path probability rations, we obtain:

exp (∆St)

=
q̃t(yt+1 → yt)

qt(yt → yt+1)
= lim

σ→0+

q̃σt (yt+1 → yt)

qσt (yt → yt+1)

= lim
σ→0+

pt(yt)
∫

pt(y)δσ(yt+1 − F (y))dy

= |detJt(yt)|

and thus

∆St = log |detJt(yt)| .

Derivation of the overdamped Langevin path probability ratio

These results follow (Nilmeier et al., 2011). The backward step is realized by

yt = yt+1 − ǫt∇uλ(yt+1) +

√

2ǫ

β
η̃t. (18)

Combining Equations (11) and (18):

−ǫt∇uλ(yt) +

√

2ǫt
β

ηt = ǫt∇uλ(yt+1)−

√

2ǫt
β

η̃t.

and thus

η̃t =

√

ǫtβ

2
[∇uλ(yt) +∇uλ(yt+1)]− ηt.
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Resulting in the path probability ratio:

exp (∆St) =
qt(yt+1 → yt)

qt(yt → yt+1)
=

p(η̃t)
∣

∣

∣

∂yt

∂η̃t

∣

∣

∣

p(ηt)
∣

∣

∣

∂yt+1

∂ηt

∣

∣

∣

=
p(η̃t)

p(ηt)
= e−

1
2 (‖η̃t‖

2−‖ηt‖
2).

and thus

−∆St =
1

2

(

‖η̃t‖
2 − ‖ηt‖

2
)

Derivation of the Langevin probability ratio

These results follow (Nilmeier et al., 2011). We define constants:

c1 =
∆t

2m

c2 =

√

4γm

∆tβ

c3 = 1 +
γ∆t

2

Then, the forward step of Brooks-Brünger-Karplus (BBK, leap-frog) Langevin dynamics is defined as:

v′ = vt + c1 [−∇uλ(xt)− γmvt + c2ηt] (19)

xt+1 = xt +∆tv′ (20)

vt+1 =
1

c3
[v′ + c1 (−∇uλ(xt+1) + c2η

′
t)] (21)

Note that the factor 4 in sqrt is different from (Nilmeier et al., 2011) – this factor is needed as we employ ∆t/2 in both

half-steps. The backward step with reversed momenta, (xt+1,−vt+1) → (xt,−vt) is then defined by:

v′′ = −vt+1 + c1 [−∇uλ(xt+1) + γmvt+1 + c2η̃t] (22)

xt = xt+1 +∆tv′′ (23)

−vt =
1

c3

[

v′′ + c1
(

−∇uλ(xt) + c2η̃
′
t

)]

(24)

To compute the momenta η̃t, η̃
′
t that realize the reverse step, we first combine Eqs. (20-23) to obtain:

v′ = −v′′ (25)

Combining Eqs. (21), (22) and (25), we obtain:
(

1 +
γ∆t

2

)

vt+1 = v′ + c1 (−∇uλ(xt+1) + c2η
′
t)

(

1−
γ∆t

2

)

vt+1 = v′ + c1 (−∇uλ(xt+1) + c2η̃t) ,

and:

η̃t = η
′
t −

√

γ∆tmβvt+1

Combining Eqs. (19), (24) and (25), we obtain:

−vt

(

1−
γ∆t

2

)

= v′′ + c1 (−∇uλ(xt) + c2ηt)

−vt

(

1 +
γ∆t

2

)

= v′′ + c1
(

−∇uλ(xt) + c2η̃
′
t

)

,
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and:

−vt

(

1−
γ∆t

2

)

− c2ηt = −vt

(

1 +
γ∆t

2

)

− c2η̃
′
t

η̃
′
t = ηt −

√

γ∆tmβvt

To compute the path probability ratio we introduce the Jacobian

J(ηt,η
′
t) = det

[

∂xt+1

∂ηt

∂vt+1

∂ηt
∂xt+1

∂η′

t

∂vt+1

∂η′

t

]

and find:

exp (∆St) =
q̃t ((xt+1,−vt+1) → (xt,vt))

qt ((xt,vt) → (xt+1,−vt+1))

=
p(η̃t)p(η̃

′
t)J(η̃t, η̃

′
t)

p(ηt)p(η
′
t)J(ηt,η

′
t)

−∆St =
1

2

((

‖η̃t‖
2
+
∥

∥η̃
′
t

∥

∥

2
)

−
(

‖ηt‖
2
+ ‖η′

t‖
2
))

where the Jacobian ratio cancels as the Jacobians are independent of the noise variables.

Derivation of the probability ratio for Markov Chain Monte Carlo

For MCMC, qt satisfies the detailed balance condition

exp(−uλ(yt)) · qt(yt → yt+1) = exp(−uλ(yt+1)) · q̃t(yt+1 → yt)

with respect to the potential function uλ. We have

∆St = log
q̃t(yt+1 → yt)

qt(yt → yt+1)

= log
exp(−uλ(yt))

exp(−uλ(yt+1))

= uλ(yt+1)− uλ(yt)

Derivation of the probability ratio for Hamiltonian MC with Metropolis acceptance

Hamiltonian MC with Metropolis acceptance defines a forward path density

qt
(

(yt,v) → (yt+1,v
K)

)

which satisfies the joint detailed balance condition

exp(−uλ(yt))N (v|0, I) · qt
(

(yt,v) → (yt+1,v
K)

)

= exp(−uλ(yt+1))N (vK |0, I) · q̃t
(

(yt+1,v
K) → (yt,v)

)

. (26)

Considering the velocity v is independently drawn from N (v|0, I), the “marginal” forward path density of yt → yt+1 is

qt (yt → yt+1) =

∫∫

N (v|0, I) · qt
(

(yt,v) → (yt+1,v
K)

)

dvdvK .
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Then, it can be obtained from (26) that

exp(−uλ(yt))qt (yt → yt+1)

=

∫∫

exp(−uλ(yt))N (v|0, I)

· qt
(

(yt,v) → (yt+1,v
K)

)

dvdvK

=

∫∫

exp(−uλ(yt+1))N (vK |0, I)

· q̃t
(

(yt+1,v
K) → (yt,v)

)

dvdvK

=exp(−uλ(yt+1))q̃t (yt+1 → yt) ,

and

∆St = log
q̃t (yt+1 → yt)

qt (yt → yt+1)

= uλ(yt+1)− uλ(yt)

Hyper-parameters and other benchmark details

All experiments were run using PyTorch 1.2 and on GTX1080Ti cards. Optimization uses Adam (Kingma & Ba, 2014) with

step-size 0.001 and otherwise default parameters. All deterministic flow transformations use RealNVP (Dinh et al., 2016).

A RealNVP block is defined by two subsequent RealNVP layers that are swapped such that each channel gets transformed

once as a function of the other channel. The affine transformation of each RealNVP layer is given by a fully connected

ReLU network.

Alanine dipeptide in Fig. 3

• Normalizing flow uses 3 RealNVP blocks with 3 hidden layers and [128, 128, 128] nodes in their transformers. Training

was done by minimizing JML for 1000 iterations with batch-size 256.

• SNF uses the same architecture and training parameters, but additionally 20 Metropolis MC steps each using a Gaussian

proposal density with standard deviation 0.1.

• As a last flow layer before x, we used an invertible transformation between Cartesian coordinates and internal

coordinates (bond lengths, angles, torsion angles) following the procedure described in (Noé et al., 2019). The internal

coordinates were normalized by removing the mean and dividing by the standard deviation of their values in the training

data.

• Training data: We set up Alanine dipeptide in vacuum using OpenMMTools. Parameters are defined by the force field

ff96 of the AMBER program (Pearlman et al., 1995). Simulations are run at standard OpenMMTools parameters with

no bond constraints, 1 femtosecond time-step for 106 time-steps (1 nanosecond) at a temperature of 1000 K, which

results in rapid exploration of the φ/ψ torsion angles and a few hundred transitions between metastable states. 105

atom positions were saved as training data.


