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Abstract

This paper introduces a new method to build lin-
ear flows, by taking the exponential of a linear
transformation. This linear transformation does
not need to be invertible itself, and the exponential
has the following desirable properties: it is guaran-
teed to be invertible, its inverse is straightforward
to compute and the log Jacobian determinant is
equal to the trace of the linear transformation. An
important insight is that the exponential can be
computed implicitly, which allows the use of con-
volutional layers. Using this insight, we develop
new invertible transformations named convolution
exponentials and graph convolution exponentials,
which retain the equivariance of their underlying
transformations. Empirically, we show that the
convolution exponential outperforms other linear
transformations in generative flows on CIFAR10
and the graph convolution exponential improves
the performance of graph normalizing flows.

1. Introduction
Consider a variable x ∈ Rd and an invertible function f :
Rd → Rd that maps each x to a unique output z = f(x).
In this case, the likelihood pX(x) can be expressed in terms
of a base distribution pZ and the Jacobian determinant of f :

pX(x) = pZ(z)

∣∣∣∣ dzdx
∣∣∣∣ , (1)

where pZ is typically chosen to be a simple factorized distri-
bution such as a Gaussian, and f is a function with learnable
parameters that is referred to as a flow. Drawing a sample
x ∼ pX is equivalent to drawing a sample z ∼ pZ and
computing x = f−1(z).
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Figure 1. A convolution of a signal x with a kernel m (left) is
equivalent to a matrix multiplication using a matrix M and a
vectorized signal ~x (right). In this example, x has a single channel
with spatial dimensions 5 × 5. The convolution is zero-padded
with one pixel on all sides. White square indicates zero values.

1.1. The Matrix Exponential

The matrix exponential gives a method to construct an in-
vertible matrix from any dimensionality preserving linear
transformation. For any square (possibly non-invertible)
matrix M, the matrix exponential is given by the power
series:

exp(M) ≡ I+
M

1!
+

M2

2!
+ . . . =

∞∑
i=0

Mi

i!
. (2)

The matrix exponential is well-defined and the series always
converges. Additionally, the matrix exponential has two
very useful properties: i) computing the inverse of the matrix
exponential has the same computational complexity as the
exponential itself, and ii) the determinant of the matrix
exponential can be computed easily using the trace:

exp(M)−1 = exp(−M) and log det [exp(M)] = TrM.

The matrix exponenential has been largely used in the field
of ODEs. Consider the linear ordinary differential equation
dx
dt = Mx. Given the initial condition x(t = 0) = x0, the
solution for x(t) at time t can be written using the matrix
exponential: x(t) = exp(M · t) · x0.

1.2. Convolutions as Matrix Multiplications

Convolutional layers in deep learning can be expressed as
matrix multiplications. Let m ? x denote a convolution1,

1In frameworks convolutions are typically implemented as
cross-correlations. We follow literature convention and refer to
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Figure 2. Visualization of the equivalent matrix exponential exp(M) where M represents a 2d convolution on a 1× 5× 5 input (channel
first). In this example the computation is explicit, however in practice the exponential is computed implicitly and the matrices M and
exp(M) are never stored.

then there exists an equivalent matrix M such that the convo-
lution is equivalent to the matrix multiplication M~x, where
~· vectorizes x. An example is provided in Figure 1. In
these examples we use zero-padded convolutions, for peri-
odic and reflective padded convolutions a slightly different
equivalent matrix exists. An important detail to notice is
that the equivalent matrix is typically unreasonably large
to store in memory, its dimensions grow quadratically with
the dimension of x. For example, for 2d signals it has size
hwc × hwc, where h is height, w is width and c denotes
number of channels. In practice the equivalent matrix is
never stored but instead, it is a useful tool to utilize concepts
from linear algebra.

2. The Convolution Exponential
We introduce a new method to build linear flows, by tak-
ing the exponential of a linear transformation. As the main
example the exponential of a convolutional layer is taken,
which we name the convolution exponential. Since a convo-
lutional is linear, it can be expressed as a matrix multiplica-
tion (section 1.2). For a convolution with a kernel m, there
exists an associated equivalent matrix using the matrix M
such that m ? x and M · ~x are equivalent. We define the
convolution exponential:

z = m ?e x, (3)

for a kernel m and signal x as the output of the matrix
exponential of the equivalent matrix: ~z = exp(M) · ~x,
where the difference between z and ~z is a vectorization or
reshape operation that can be easily inverted. Notice that
although ? is a linear operation with respect to m and x,
the exponential operation ?e is only linear with respect to x.
Using the properties of the matrix exponential, the inverse
is given by (−m) ?e x, and the log Jacobian determinant is
the trace of M. For a 2d convolutional layer the trace is hw ·∑
cmc,c,my,mx

given the 4d kernel tensor m, where height
is h, width is w, the spatial center of the kernel is given
by my,mx and c iterates over channels. As an example,
consider the convolution in Figure 1. The exponential of
its equivalent matrix is depicted in Figure 2. In contrast
with a standard convolution, the convolution exponential

them as convolutions in text. In equations ? denotes a cross-
correlations and ∗ is a convolution.

guaranteed to be invertible, and computing the Jacobian
determinant is computationally cheap.

Algorithm 1 Implicit matrix exponential

Inputs: M, x
Output: z
let π ← x, z← x
for i = 1, . . . , T do
π ←M · π/i
z← z+ π

end for

Algorithm 2 General linear exponential

Inputs: x, linear function L : X → X
Output: z
let π ← x, z← x
for i = 1, . . . , T do
π ← L(π)/i
z← z+ π

end for

Implicit iterative computation
Due to the popularity of the matrix exponential as a so-
lutions to ODEs, numerous methods to compute the ma-
trix exponential with high numerical precision exist (Arioli
et al., 1996; Moler & Van Loan, 2003) which where used by
Goliński et al. (2019) to construct orthogonal matrices for
flows. However, these methods typically rely on having the
matrix M in memory, which is very expensive for transfor-
mations such as convolutional layers. Instead, we propose
to solve the exponential using matrix vector products M~x.
The exponential matrix vector product exp(M)~x can be
computed implicitly using the power series, multiplied by
any vector ~x using only matrix-vector multiplications:

exp(M) · ~x = ~x+
M · ~x
1!

+
M2 · ~x

2!
+ . . . =

∞∑
i=0

Mi · ~x
i!

, (4)

where the term M2 · x can be expressed as two matrix
vector multiplications M(M · x). Further, computation
from previous terms can be efficienty re-used as described
in Algorithm 1. Using this, the convolution exponential can
be directly computed using the series:

m ?e x = x+
m ? x

1!
+

m ? (m ? x)

2!
+ . . . , (5)
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(a) Forward computation z = m ?e x.

(b) Reverse computation x = −m ?e z.

Figure 3. Visualization of the feature maps in the convolution exponential with the edge filter m = [0.6, 0,−0.6]. Note that the notation
w?2x simply means w? (w?x), that is two subsequent convolutions on x. Similarly for any n the expression w?nx = w? (w?n−1x).

which can be done efficiently by simply setting L(x) =
m ? x in Algorithm 2. A visual example of the implicit
computation is presented in Figure 3.

Power series convergence
Even though the exponential can be solved implicitly, it
is uncertain how many terms of the series will need to be
expanded for accurate results. Moreover, it is also uncer-
tain that the series can be computed with high numerical
precision. To resolve both issues, we constrain the induced
matrix norm of the linear transformation. Given the p-norm
on the matrix M, a theoretical upper bound for the size
of the terms in the power series can be computed using
the inequality: ||Mi x||p ≤ ||M||ip||x||p. Hence, an upper
bound for relative size of the norm of a term at iteration i,
is given by ||M||ip/i!. Notice that the factorial term in the
denominator causes the exponential series to converges very
fast, which is depicted in Figure 4.

Figure 4. Upper bound of the norm of a term in the power series
||Mix||p/i! at iteration i, relative to the size of the input ||x||p
given a matrix norm.

In our experiments we constrain M using spectral normal-
ization (Miyato et al., 2018; Gouk et al., 2018), which con-
strains the `2 norm of the matrix (p = 2) and can be com-

puted efficiently for convolutional layers and standard linear
layers. Even though the algorithm produces a lower bound
on the `2 norm, in practice the bound is sufficiently close
to produce convergence behaviour as shown in Figure 4.
Moreover, the figure depicts worst-case behaviour given the
norm, and typically the series converges far more rapidly.
In experiments we normalize the convolutional layer using
a `2 coefficient of 0.9 and we find that expanding around 5
or 6 terms of the series is generally sufficient.

2.1. Graph Convolution Exponential

In this section we extend the Convolution Exponential to
graph structured data. Given a graph G = (V, E) with nodes
v ∈ V and edges e ∈ E . We define a matrix of nodes ×
features X ∈ RN×nf , an adjacency matrix A ∈ RN×N
and a degree matrix Dii =

∑
j Aij . Employing a similar

notation as (Kipf & Welling, 2016), a linear graph convo-
lutional layer GCL : RN×nf → RN×nf can be defined as:

GCLθ(X) = IXθ0 +D−
1
2AD−

1
2Xθ1, (6)

where θ0,θ1 ∈ Rnf×nf are free parameters. Since the out-
put in the graph convolution linearly depends on its inputs, it
can also be expressed as a product of some equivalent matrix
M ∈ RN ·nf×N ·nf with a vectorized signal ~X ∈ RN ·nf .
Note that the trace of this equivalent matrix Tr M is is equal
to the trace of θ0, multiplied by the number of nodes, i.e.
Tr M = N Tr θ0. This is because the adjacency matrix A
contains zeros on its diagonal and all self-connections are
parametrized by θ0. The proofs to obtain M from equation
6 and its trace Tr M are shown in the Appendix.

The graph convolution exponential can be easily computed
by replacing L with the function GCL in Algorithm 2. Since
the size and structure of graphs may vary, the norm of ||M||
changes depending on this structure even if the parameters
θ0 and θ1 remain unchanged. As a rule of thumb we find
that the graph convolution exponential converges quickly
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when the norm ||θ0||2 is constrained to one divided by the
maximum number of neighbours, and ||θ1||2 to one (as it is
already normalized via D).

2.2. General Linear Exponentials and Equivariance

In the previous section we generalized the exponential
to convolutions and graph convolutions. Graph convolu-
tions can be viewed as permutation equivariant convolu-
tions (Maron et al., 2019). In this section we ask the ques-
tion whether exponentiation and equivariance commute, i.e.
which equivariant convolutions will remain equivariant after
exponentiation.

Consider a feature field h(x) with components hc(xi)
where c indexes the channel dimensions of the capsules
and xi is the i′th pixel at position xi. Note that feature
fields can consist of multiple capsules but we will restrict
ourselves without loss of generality to only one. We now
construct a resized vector h which combines the indices
into a = (c, i). Next we define a (not necessarily linear)
operator K which maps K : h→ h′. Equivariance under
K is defined as [K,M ] = KM −MK = 0 where M is
a general kernel that maps one layer of the neural network
to the next layer. It states that first performing the map M
(usually a convolution) and then the symmetry transform
in the activation layer is the same as first transforming the
input layer and then convolving. Note that neither K nor M
need to be invertible, but that we did require that the symme-
try transformation in the input layer and the activation layer
are the same (this is less general than the usual equivariance
constraint which is of the form K1M = MK2). Subject to
that constraint, this definition is however very general and
encompasses group convolutions (Cohen & Welling, 2016;
Dieleman et al., 2016) and permutation equivariant graph
convolutions (Maron et al., 2019).

Since [K,M ] = 0 it follows that [Kn,Mm] = 0 for pos-
itive powers n,m. Moreover, any linear combination of
any collection of powers commutes as well, which in turn
implies the statement [K, expM ] = 0 proving that the ex-
ponential of the map M is still equivariant. In particular
it shows that both the exponential of group convolutions
and permutation equivariant graph convolutions are still
equivariant.

3. Related Work
Deep generative models can be broadly divided in likeli-
hood based model such as autoregressive models (ARMs)
(Germain et al., 2015), Variational AutoEncoders (VAEs)
(Kingma & Welling, 2014), Normalizing flows (Rezende
& Mohamed, 2015), and adversarial methods (Goodfellow
et al., 2014). Normalizing flows are particularly attractive
because they admit exact likelihood estimation and can be

designed for fast sampling. Several works have studied
equivariance in flow-based models (Köhler et al., 2019;
Rezende et al., 2019).

Linear flows are generally used to mix information in-
between triangular maps. Existing transformations in lit-
erature are permutations (Dinh et al., 2017), orthogonal
transformations (Tomczak & Welling, 2016; Goliński et al.,
2019), 1 × 1 convolutions (Kingma & Dhariwal, 2018),
low-rank Woodbury transformations (Lu & Huang, 2020),
emerging convolutions (Hoogeboom et al., 2019a), and pe-
riodic convolutions (Finzi et al., 2019; Karami et al., 2019;
Hoogeboom et al., 2019a). From these transformations only
periodic and emerging convolutions have a convolutional
parametrization. However, periodicity is generally not a
good inductive bias for images, and since emerging convo-
lutions are autoregressive, their inverse requires the solution
to an iterative problem. Notice that Goliński et al. (2019)
utilize the matrix exponential to construct orthogonal trans-
formations. However, their method cannot be utilized for
convolutional transformations since they compute the expo-
nential matrix explicitly. Our linear exponential can also be
seen as a linear ODE (Chen et al., 2018), but the methods are
used for different purposes and are computed differently.

4. Experiments
Because image data needs to be dequantized, we optimize
the expected lowerbound (ELBO) of the log-likelihood.
The performance is compared in terms of negative ELBO
and negative log-likelihood (approximated with 1000 im-
portance weighting samples) in bits per dimension on CI-
FAR10.

4.1. Mixing for generative flows

In this experiment the convolution exponential is utilized
as a linear layer in-between affine coupling layers. For a
fair comparison, all the methods are implemented in the
same framework, and are optimized using the same proce-
dure. For details regarding architecture and optimization
see Appendix A. The convolution exponential is compared
to other linear mixing layers from literature: 1 × 1 convolu-
tions (Kingma & Dhariwal, 2018), emerging convolutions
(Hoogeboom et al., 2019a), and Woodbury transformations
(Lu & Huang, 2020). The number of intermediate channels
in the coupling layers are adjusted slightly such that each
method has an approximately equal parameter budget. The
experiments show that our method outperforms all other
methods measured in negative ELBO and log-likelihood
(see Table 1). Interestingly, even though emerging con-
volutions also have a convolutional parametrization, their
performance is worse than the convolution exponential. This
indicates that the autoregressive factorization of emerging
convolutions somewhat limits their flexibility, and the expo-
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Table 1. Generative modelling performance with a generative flow. Results computed using log2 averaged over dimensions, i.e. bits per
dimension. Results were obtained by re-implementing the relevant method in the same framework for a fair comparison. Models have an
approximately equal parameter budget.

Mixing type CIFAR10
−ELBO − logP (x)

1× 1 (Kingma & Dhariwal, 2018) 3.285± 0.008 3.266± 0.007
Emerging (Hoogeboom et al., 2019a) 3.245± 0.002 3.226± 0.002
Woodbury (Lu & Huang, 2020) 3.247± 0.003 3.228± 0.003
Convolution Exponential 3.237± 0.002 3.218± 0.003

Table 2. Benchmark over different models for synthetic graph datasets. Per-node Negative Log Likelihood (NLL) is reported in nats.

Model MoG-4 MoG-9 MoG-16 MoG-Ring

Dataset entropy 3.63 ±0.000 4.26 ±0.013 - ≤4.05 ±0.001
Baseline Coupling Flow 3.89 ±0.012 6.14 ±0.012 7.20 ±0.021 4.35 ±0.023
Graph Normalizing Flow 3.69 ±0.016 4.60 ±0.067 5.38 ±0.048 4.22 ±0.025

with Graph Convolution Exponential 3.68 ±0.017 4.52 ±0.047 5.26 ±0.047 4.19 ±0.036

nential parametrization works better.

4.2. Graph Normalizing Flows

In this section we compare our Graph Convolution Expo-
nential with other methods from the literature. As a first
baseline we use a baseline coupling flow (Dinh et al., 2017)
that does not exploit the graph structure of the data. The sec-
ond baseline is a Graph Normalizing Flows that uses graph
coupling layers as described in (Liu et al., 2019). Since nor-
malizing flows for edges of the graph is an open problem,
following (Liu et al., 2019) we assume a fully connected
adjacency matrix. Our method then adds a graph convolu-
tion exponential layer preceding every coupling layer. For
further implementation details refer to Appendix A.1. Fol-
lowing (Liu et al., 2019) we test the methods on the graph
datasets Mixture of Gaussian (MoG) and Mixture of Gaus-
sians Ring (MoG-Ring), which are essentially mixtures of
permutation of Gaussians. The original MoG dataset con-
siders 4 Gaussians, which we extend to 9 and 16 points
obtaining two new datasets MoG-9 and MoG-16 to study
performance when the number of nodes increase. Results
are presented in Table 2. Adding the graph convolution
exponential improves the performance in all four datasets.
The improvement becomes larger as the number of nodes
increases (e.g. MoG-9 and MoG-16), which is coherent
with the intuition that our Graph Convolution Exponential
propagates information among nodes in the mixing layer.

5. Conclusion
In this paper we introduced a new simple method to con-
struct invertible transformations, by taking the exponential
of any linear transformation. Unlike prior work, we observe
that the exponential can be computed implicitly. Using this
we developed new invertible transformations named convo-
lution exponentials and graph convolution exponentials, and
showed that they retain their equivariance properties under
exponentiation.
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A. Experimental Details
A.1. Mixing experiment

We train on the first 40000 images of CIFAR10, using the
remaining 10000 for validation. The final performance is
shown on the conventional 10000 test images. The flow
architecture is multi-scale following (Kingma & Dhariwal,
2018): Each level starts with a squeeze operation, and then
10 subflows which each consist of a linear mixing layer and
an affine coupling layer (Dinh et al., 2017). The coupling
architecture utilizes densenets as described in (Hoogeboom
et al., 2019b). Further, we use variational dequantization
(Ho et al., 2019), using the same flow architecture as for the
density estimation, but using less subflows. Following (Dinh
et al., 2017; Kingma & Dhariwal, 2018) after each level
(except the final level) half the variables are transformed
by another coupling layer and then factored-out. The final
base distribution pZ is a diagonal Gaussian with mean and
standard deviation. All methods are optimized using a batch
size of 256 using the Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 0.001 with standard settings. More
details are given in Table 3. Notice that convexp mixing
utilizes a convolution exponential and a 1× 1 convolutions,
as it tends to map close to the identity by the construction
of the power series. Results are obtained by running models
three times after random weight initialization, and the mean
of the values is reported. Runs require approximately four
to five days to complete. Results are obtained by running on
four NVIDIA GeForce GTX 1080Ti GPUs, CUDA Version:
10.1.

A.2. Graph Normalizing Flow experiment

The normalizing flows in the graph experiments all utilize
three subflows, where a subflow consists of an actnorm layer
(Kingma & Dhariwal, 2018), a 1 × 1 convolution and an
affine coupling layer (Dinh et al., 2017). In the model that
utilizes the graph convolution exponential, the convolution
exponentional precedes each coupling layer. In the base-
line coupling flow, the neural networks inside the coupling
layers are 4-layer Multi Layer Perceptrons (MLPs) with
Leaky Relu activations. In the graph normalizing flow, the
neural networks inside the coupling layers are graph neural
networks where node and edge operations are performed
by a 2-layer and a 3-layer MLPs respectively with ReLU
activations. All above mentioned neural networks utilize 64
hidden features.

All experiments are optimized for 35, 000 iterations, using
a batch size of 256 and a starting learning rate of 2−4 with a
learning rate decay factor of 0.1 every 15, 000 iterations. For
testing we used 1, 280, 000 samples, i.e. 5.000 iterations
with a batch size of 256.
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Table 3. Architecture settings and optimization settings for the mixing experiments.
Model levels subflows epochs lr decay densenet depth densenet growth deq. levels deq. subflows

1× 1 2 10 1000 0.995 8 64 1 4
Emerging 2 10 1000 0.995 8 63 1 4
Woodbury 2 10 1000 0.995 8 63 1 4
ConvExp 2 10 1000 0.995 8 63 1 4


