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Abstract

Normalizing flow models have risen as a popu-
lar solution to the problem of density estimation,
enabling the ability to perform both exact prob-
ability density evaluation as well as high-quality
synthetic data generation. However, in contexts
where individuals are directly associated with the
training data at hand, releasing such a model
raises potential privacy concerns. In this work,
we propose the use of normalizing flow models
providing explicit differential privacy guarantees
as a novel approach to the problem of privacy-
preserving density estimation. We evaluate the
efficacy of such an approach empirically using
benchmark datasets and demonstrate that the pro-
posed method outperforms previous state-of-the-
art approaches.

1. Introduction
The task of density estimation concerns the construction
of an estimate, given observed data, of an unknown prob-
ability density function. Typically the construction of this
estimate allows one to perform a variety of tasks of inter-
est, including log likelihood evaluation as well as synthetic
data generation. Although, in contexts concerning sensitive
data, the construction and subsequent release of such an
estimate could very well leak potentially private informa-
tion. For example, without explicitly asserting a rigorous
privacy guarantee, nothing precludes the possibility of an
individual’s data appearing in the synthetic data generated
by the model, disproportionate density being assigned to a
point corresponding to them, or any other vulnerability due
to arbitrary analysis of the learned model parameters. Hence
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to the extent density estimation remains a task of interest to
the modeling community, continued attention is required to
address how such approaches respect participant privacy.

Differential privacy (11) has emerged as the predominant
notion for privacy in the context of statistical data analysis.
At a high level, differentially private analyses assert a bound
on the extent to which their output distribution can change
due to the inclusion or exclusion of any one individual from
the analysis. Algorithms which adhere to this notion exhibit
a number of desirable properties, including privacy guaran-
tees which hold regardless of the auxiliary information an
adversary may have and composition of privacy guarantees
across multiple analyses. Hence, given the strength of this
definition, it acts as a compelling privacy notion to abide by
in the design of privacy-preserving analyses.

Density estimators are a particularly strong class of analyses
due to their versatile ability to address a wide range of tasks
concerning a distribution, precisely why the existence of an
accurate and privacy-preserving density estimator would be
surprising. The private construction of such a model would
implicitly yield a differentially private approach to anomaly
detection—a task of substantial previous investigation (3;
26; 13)—through an immediate application of likelihood
evaluation. In addition, given that density estimators often
enable efficient sampling, such a model would yield a viable
method for privacy-preserving synthetic data generation.
This task in particular has been of longstanding interest to
the privacy community (31) as it addresses many of the
limitations imposed by the query model (10) by enabling
large numbers of arbitrary analyses. Privately generating a
synthetic dataset only incurs a fixed privacy cost during the
generation process; all subsequent queries on the synthetic
data incur no additional cost to the overall privacy budget
due to differential privacy’s notion of immunity to post-
processing.

Normalizing flow models present themselves as a particu-
larly attractive approach to the task of density estimation
due to their proven empirical ability to approximate highly
complex distributions. These models approach the task of
density estimation via a transformation on a chosen base den-
sity by a sequence of invertible, non-linear transformations,
enabling density querying on the transformed distribution
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via an application of the change-of-variables formula. It has
since been an open question to what degree normalizing flow
models constructed in a differentially private manner could
improve upon existing approaches to privacy-preserving
density estimation.

In this work we propose the use of normalizing flow models,
trained in a differentially private manner, as a novel ap-
proach to the task of privacy-preserving density estimation.
We outline an algorithm (DP-NF, Algorithm 1 in Section 2)
that privately optimizes the model parameters via gradient
descent according to DP-SGD (1). We apply this optimiza-
tion to the parameters of a Masked Autoregressive Flow
(28), our primary architecture of consideration, and achieve
empirical results (Section 3) which outperform previous
state-of-the-art approaches. Additionally, rather than per-
forming composition via the moments accountant (MA) (1),
we achieve tighter privacy guarantees via composition un-
der the recently introduced notion of Gaussian differential
privacy (8).

Details on related work are given in Appendix C.

2. Differentially Private Normalizing Flows
In the context of differentially private data analysis, the
process by which we map an observed dataset to a set of
trained model parameters is captured by the notion of a
randomized algorithm. The goal in this case is to construct
this randomized algorithm in such a way so as to satisfy a
(ε, δ)-differential privacy guarantee, defined as follows:

Definition 1 ((11)) A randomized algorithmM : D → R
satisfies (ε, δ)-differential privacy (DP) if for any two input
datasets D,D′ ∈ D that differ in a single entry and for any
subset of outputs S ⊆ R, it satisfies: Pr[M(D) ∈ S] ≤
eεPr[M(D′) ∈ S] + δ.

In a non-private context, one would typically perform this
mapping by through some form of stochastic gradient de-
scent, directly optimizing the model parameters to minimize
the negative log likelihood of the observed data. Although
naturally this approach does not yield an explicit privacy
guarantee. To augment this procedure to produce such a
guarantee, Differentially Private Stochastic Gradient De-
scent (DP-SGD), introduced in (1), offers itself as a tech-
nique for differentially private non-convex optimization. At
each iteration, DP-SGD subsamples1 a batch of data and
computes the per-example gradient corresponding to each
example in the batch. To achieve a differential privacy
guarantee, DP-SGD places an upper-bound each of their
`2 norms to be at most some constant C via gradient clip-

1The original algorithm of (1) does this via Poisson subsam-
pling, but can also be done via uniform subsampling while retain-
ing a privacy guarantee (32).

ping. Then, the average of these per-example gradients is
computed, added with mean-zero Gaussian noise exhibiting
standard deviation proportional to C, and then applied to
the model.

One can then go forward to analyze the privacy guarantees
of multiple applications of DP-SGD across iterations via
some privacy accounting scheme of choice. In recent years
this has been primarily done through the moments accoun-
tant (1), expanded upon in Appendix B. Although, recent
work (8) has provided an alternative analysis for DP-SGD
utilizing privacy composition under the framework of µ-
Gaussian differential privacy, which acts as the basis for our
analysis. Noting that each iteration of DP-SGD achieves
a µ-GDP guarantee depending on the standard deviation
of noise applied to gradient updates, the overall privacy
guarantee corresponding to k applications, each satisfying
µi-GDP, is

√
µ2
1 + µ2

2 + . . . µ2
k-GDP. One is then able to

convert this overall µ-GDP guarantee to a corresponding
(ε, δ)-differential privacy guarantee by noting that an algo-
rithm is µ-GDP if and only if it is (ε, δ(ε))-differentially pri-
vate for all ε ≥ 0, where δ(ε) = Φ(− ε

µ+ µ
2 )−eεΦ(− ε

µ−
µ
2 )

and Φ(·) is the cumulative density function of the Normal
distribution.

This technique for privacy-preserving optimization through
DP-SGD, alongside the analysis facilitated via µ-GDP, is
the basis for our approach. We present our approach for dif-
ferentially private density estimation via normalizing flows,
DP-NF, in Algorithm 1. We also briefly discuss performance
improvements based on the data-dependent initialization of
normalization layers and the use of a differentially private
estimate of the distribution to act as a prior. We empha-
size that our primary technical contribution is not in the
design of these algorithms, but rather the novel applica-
tion of these tools to the problem of differentially private
density estimation in a way that yields substantial perfor-
mance improvements over prior work, as demonstrated by
our empirical results in Section 3.

2.1. Our Approach

Training a normalizing flow model corresponds to mini-
mizing the loss function L(θ) = − 1

N

∑N
i=1 log pθ(x(i))

through optimization of θ via gradient descent. To make
this training private in Algorithm 1, we update θ using the
DP-SGD algorithm of (1), with some subtle yet important
augmentations to the standard minibatch gradient descent
procedure to allow for an explicit privacy guarantee, in
accordance with DP-SGD. First, batches are sampled via
uniform subsampling, i.e., sampled such that each possible
batch of size b has equal likelihood of being chosen (as op-
posed to shuffling and taking equally sized partitions of the
dataset, which is often preferred in practice). Second, rather
than computing the gradient with respect to the entire batch,
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Algorithm 1 DP-NF, differentially private density estima-
tion via normalizing flows

1: Input: Dataset X = {x(1), . . . ,x(n)}, initialized pa-
rameters θ, learning rate η, batch size b, noise scale
σ, upper-bound on `2 norm of per-example gradient C,
training privacy budget ε, training privacy tolerance δ,
privacy accountant P .

2: t← 1
3: while P (t, b/n, σ, C, δ) < ε do
4: Take a uniformly random subsample It ⊆ {1, . . . , n}

with batch size b.
5: for i ∈ It do
6: g

(i)
t ← ∇θ − log pθ(x(i))

7: ḡ
(i)
t ← g

(i)
t /max{1, ||g(i)t ||2/C}

8: end for
9: θ ← θ − η · 1b (

∑
i ḡ

(i)
t +N (0, σ2C2I))

10: t← t+ 1
11: end while
12: Output θ

the gradient with respect to each individual data point is
calculated, clipped to have maximum `2 norm C, averaged,
then added with a randomly sampled Gaussian noise vector.

Algorithm 1 also requires a privacy accountant to be spec-
ified as input. This privacy accountant will dynamically
track the ε privacy loss incurred by composition over all
gradient update steps as a function of the training parame-
ters, and will halt the algorithm once a pre-specified budget
is reached. Common choices for this accountant include
the moments accountant (1) or composition via Gaussian
differential privacy (8). In our experiments in Section 3, we
yield preferable results using a GDP privacy accountant.

In summary, DP-NF in Algorithm 1 is a direct instantiation
of DP-SGD to train a normalizing flow model to minimize
negative log likelihood, along with the analyst’s choice of
privacy accountant. The privacy guarantees of DP-NF fol-
low immediately from those of DP-SGD (1) when instan-
tiated with the moments accountant, and from NoisySGD
(4) when instantiated with the Gaussian differential privacy
accountant.

In practice, one will find that many deep learning models
(including the normalizing flow models used in our experi-
ments) are much better optimized using adaptive learning
rate optimization schemes. Given this, we found significant
benefit in using a direct extension to DP-SGD which applies
noisy gradients to the model according to the Adam opti-
mizer (21). Note that both approaches yield identical privacy
guarantees, given that computation of the first and second
moments of the noisy gradients can be seen as merely a
data-independent post-processing step.

Private Data-Dependent Priors. Previous normalizing
flow literature has suggested that modest improvements
in empirical results can be achieved through the use of more
complex priors than the spherical Gaussian, such as a mix-
ture of Gaussians (28) or a trained Gaussian mixture model
(19). A natural privacy-preserving analog to the latter would
be to fit a Gaussian mixture model via DP-EM (29) with
privacy budget (ε1, δ1) to estimate a prior, and then refine
this prior using DP-NF with privacy budget (ε2, δ2) to yield
an encompassing normalizing flow model. This would be
(ε1 + ε2, δ1 + δ2)-differentially private in the worst case,
and could yield preferable results in contexts where the dis-
tribution at hand is highly discontinuous while exhibiting
locally nonlinear density.

3. Experiments
Dataset. The Life Science dataset is a standard density esti-
mation benchmark dataset from the UCI machine learning
repository (9) containing 26,733 real-valued records of di-
mension 10. This dataset was used in the original evaluation
of our baseline model (29).

Hyperparameter Search and Model Selection. Reported
privacy budgets in our results correspond only to the train-
ing of each model, and does not include privacy loss from
hyperparameter search and model selection.2 We chose not
to select hyperparameters in a privacy-preserving manner
as it was not done by our baseline and distracts from the
focus of our contribution. Although, it was generally ob-
served that changes in the network structure itself yielded
negligible changes in results within reason. We found that
training parameters such as the gradient clipping bound and
batch size had a much more substantial impact on model
performance, which is consistent with observations made in
(1).

Model Architecture. The architecture of the model used
in our experiments was a variant of a Masked Autoregres-
sive Flow (MAF) (28) composed of a repeated sequence of
five blocks, each containing a MADE (14) layer, a reversal
layer, and an activation normalization layer. Models were
optimized via Adam, with default parameters of β1 = 0.9
and β2 = 0.999.

3.1. Density Estimation Tasks

We implemented our algorithm for differentially private
normalizing flows on the Life Science dataset, and evaluated

2We note that these can be done privately. For example, (15)
provides discrete optimization methods that can be used for private
hyperparameter search over discrete model architectures. (2) uses
Report Noisy Max (12) for private model selection. Some work has
also been done to account for high-performance models without
having to spend a significant privacy budget (6; 23).
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Table 1. Average test log likelihood for varying privacy budgets ε. Error bars denote standard deviation over ten independent cross-
validation splits. Bolded results denote best performing model for a given ε.

Life Science
δ = 1.00× 10−4 ε = 0.50 ε = 1.00 ε = 2.00 ε = 4.00

DP-NF (GDP) 9.29 ± 0.18 9.83 ± 0.12 10.49 ± 0.09 11.01 ± 0.24
DP-NF (MA) 8.49± 0.12 8.95± 0.15 9.63± 0.12 10.33± 0.08

DP-EM (MA) 1.96± 0.27 5.16± 0.20 8.67± 0.06 9.29± 0.06
DP-EM (zCDP) −9.91± 0.49 −0.87± 0.37 2.51± 0.28 5.48± 0.18

Figure 1. Dimension-wise histograms of synthetically generated
Life Science data, superimposed over real data, for ε = 0.5 and
δ = 10−4. Top row: DP-EM. Bottom row: DP-NF. One will
note DP-NF’s capability of capturing regions of concentrated den-
sity, whereas DP-EM struggles in this respect. Refer to Figure 4
for a holistic dimension-wise view of all features.

our performance against the baseline of DP-EM (29) for a
variety of quantitative and qualitative metrics related to
density estimation tasks.

First, Figure 1 (and more holistically, Figure 4) shows that
DP-NF provides a qualitative increase in sample quality un-
der visualization. It presents dimension-wise histograms of
synthetically generated features of the Life Science dataset,
using DP-NF and DP-EM for comparison. Both methods
used ε = 0.5 and δ = 10−4. In every plot, the synthetic
data in orange is superimposed over the real data in blue.
We qualitatively observe that for nearly all ten features, the
distribution of data generated by DP-NF closely matches
that of the real data, while DP-EM was relatively unable
to replicate regions of concentrated density for certain di-
mensions. This could be due to the fact that that for a fixed
number of components, DP-EM is constrained to cover the
support of the distribution and must ignore nuanced details.
Normalizing flow models, on the other hand, exhibit height-
ened expressiveness over traditional statistical methods like
Gaussian mixture models, and we see that they are able to
capture these nuances more readily.

Figure 2 presents average log likelihood assigned to a held
out test set under DP-NF and the baseline method DP-EM

Figure 2. Average test log likelihood across ten independent cross-
validation trials as a function of cumulative privacy loss ε (figure
corresponds to Figure 3 of (29), with the inclusion of DP-NF). DP-
EM configured with 3 mixture components and to use Gaussian
mechanism, as per the original work. DP-NF composed with GDP,
as well as MA for fair comparison. DP-NF outperforms DP-EM
for all privacy accountant methods, even when both methods use
the same technique (MA).

(29) as a function of ε. We divided the dataset into 10
pairs of training (90%) and test sets (10%), and reported
the average test log likelihood per data point across the 10
independent trials. We found that DP-NF reliably assigned
higher likelihoods to holdout data than that of DP-EM for
identical privacy budgets, across a variety of privacy ac-
counting schemes. The privacy guarantees of DP-NF proved
quite practical, matching the peak performance of DP-EM
(achieved around ε ≈ 4) for only an expenditure of ε ≈ 0.5.
These results are also listed in Table 1 with error bars show-
ing standard deviation across 10 independent runs. Figure
2 and Table 1 show that DP-NF outperforms DP-EM even
controlling for the privacy accountant used, emphasizing
that while the GDP accountant does provide some benefit,
the underlying performance improvements truly come from
the DP-NF method itself.



Differentially Private Normalizing Flows

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan

McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. Proceedings
of the 2016 ACM SIGSAC Conference on Computer
and Communications Security - CCS’16, 2016.

[2] Brett K. Beaulieu-Jones, Zhiwei Steven Wu, Chris
Williams, Ran Lee, Sanjeev P. Bhavnani, James Brian
Byrd, and Casey S. Greene. Privacy-preserving genera-
tive deep neural networks support clinical data sharing.
bioRxiv, 2018.

[3] Daniel Bittner, Anand Sarwate, and Rebecca Wright.
Using Noisy Binary Search for Differentially Private
Anomaly Detection, pages 20–37. 06 2018.

[4] Zhiqi Bu, Jinshuo Dong, Qi Long, and Weijie J. Su.
Deep learning with gaussian differential privacy, 2019.

[5] Mark Bun and Thomas Steinke. Concentrated differ-
ential privacy: Simplifications, extensions, and lower
bounds. CoRR, abs/1605.02065, 2016.

[6] Kamalika Chaudhuri and Staal A Vinterbo. A stability-
based validation procedure for differentially private
machine learning. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 26, pages 2652–2660. Curran Associates, Inc.,
2013.

[7] Shuchi Chawla, Cynthia Dwork, Frank McSherry, and
Kunal Talwar. On the utility of privacy-preserving
histograms. In UAI, 2005.

[8] Jinshuo Dong, Aaron Roth, and Weijie J. Su. Gaussian
differential privacy. CoRR, abs/1905.02383, 2019.

[9] Dheeru Dua and Casey Graff. UCI machine learning
repository, 2017.

[10] Cynthia Dwork. Differential privacy: A survey of
results. In Theory and Applications of Models of Com-
putation, volume 4978 of Lecture Notes in Computer
Science, pages 1–19. Springer Verlag, April 2008.

[11] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Proceedings of the 3rd Conference
on Theory of Cryptography, TCC ’06, pages 265–284,
2006.

[12] Cynthia Dwork and Aaron Roth. The algorithmic
foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407, August 2014.

[13] L. Fan and L. Xiong. Differentially private anomaly
detection with a case study on epidemic outbreak de-
tection. In 2013 IEEE 13th International Conference
on Data Mining Workshops, pages 833–840, 2013.

[14] Mathieu Germain, Karol Gregor, Iain Murray, and
Hugo Larochelle. MADE: masked autoencoder for
distribution estimation. CoRR, abs/1502.03509, 2015.

[15] Anupam Gupta, Katrina Ligett, Frank McSherry,
Aaron Roth, and Kunal Talwar. Differentially pri-
vate approximation algorithms. CoRR, abs/0903.4510,
2009.

[16] Rob Hall, Alessandro Rinaldo, and Larry Wasserman.
Differential privacy for functions and functional data.
J. Mach. Learn. Res., 14(1):703–727, February 2013.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. CoRR,
abs/1502.01852, 2015.

[18] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. CoRR, abs/1502.03167, 2015.

[19] Pavel Izmailov, Polina Kirichenko, Marc Finzi, and
Andrew Gordon Wilson. Semi-supervised learning
with normalizing flows, 2019.

[20] Gautam Kamath, Or Sheffet, Vikrant Singhal, and
Jonathan Ullman. Differentially private algorithms for
learning mixtures of separated gaussians, 09 2019.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization, 2014.

[22] Diederik P. Kingma and Prafulla Dhariwal. Glow:
Generative flow with invertible 1x1 convolutions,
2018.

[23] Jingcheng Liu and Kunal Talwar. Private selection
from private candidates. CoRR, abs/1811.07971, 2018.

[24] G. Mclachlan and K. Basford. Mixture models: Infer-
ence and applications to clustering, 01 1988.

[25] Kobbi Nissim, Sofya Raskhodnikova, and Adam
Smith. Smooth sensitivity and sampling in private data
analysis. In Proceedings of the Thirty-Ninth Annual
ACM Symposium on Theory of Computing, STOC ’07,
pages 75–84, New York, NY, USA, 2007. Association
for Computing Machinery.

[26] Rina Okada, Kazuto Fukuchi, Kazuya Kakizaki, and
Jun Sakuma. Differentially private analysis of outliers,
2015.



Differentially Private Normalizing Flows

[27] George Papamakarios. Neural density estimation and
likelihood-free inference, 2019.

[28] George Papamakarios, Theo Pavlakou, and Iain Mur-
ray. Masked autoregressive flow for density estimation.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems
30, pages 2338–2347. Curran Associates, Inc., 2017.

[29] Mijung Park, James Foulds, Kamalika Choudhary, and
Max Welling. DP-EM: Differentially Private Expecta-
tion Maximization. In Aarti Singh and Jerry Zhu, edi-
tors, Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, volume 54 of
Proceedings of Machine Learning Research, pages
896–904, Fort Lauderdale, FL, USA, 20–22 Apr 2017.
PMLR.

[30] Tim Salimans and Diederik P. Kingma. Weight
normalization: A simple reparameterization to ac-
celerate training of deep neural networks. CoRR,
abs/1602.07868, 2016.

[31] H. S. Surendra and .S Mohan.H. A review of syn-
thetic data generation methods for privacy preserving
data publishing. International Journal of Scientific
Technology Research, 6:95–101, 2017.

[32] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Ka-
siviswanathan. Subsampled rényi differential pri-
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A. Related Work
Gaussian mixture models (GMMs) are known to be a par-
ticularly strong density estimation baseline (27) given that
they are a universal approximator of densities - that is, they
are able to approximate any density function arbitrarily well
given a sufficient number of components (24). They ap-
proach the task of density estimation through a weighted
sum of Gaussian distributions, parameterized in full by their
respective means, covariance matrices, and weights. The
first differentially private algorithm for learning the param-
eters of a Gaussian mixture model comes from the work
of (25) which makes use of their sample-and-aggregate
framework to convert non-private algorithms into private
algorithms, applied to the task of learning mixtures of Gaus-
sians. However, their approach exhibits strong assumptions

on the range of the parameter space and assumes a uni-
form mixture of spherical Gaussians in their investigation.
Follow-up work of (20) proposes a modernized approach
which improves upon the sample complexity of the afore-
mentioned work and removes the strong a priori bounds
on the parameters of the mixture components, although it
makes the assumption that the components of the mixture
are sufficiently well-separated.

There has also been work in learning the parameters of
a Gaussian mixture model through differentially private
variants of expectation maximization (EM). One notable
instance of this is DPGMM (33), which achieves a privacy
guarantee at each iteration of EM through the addition of
calibrated Laplace noise to the estimated parameters fol-
lowing the maximization step. These individual privacy
guarantees are then combined into an overall privacy guar-
antee via sequential composition, i.e., by taking their sum.
The work of (29) follows a conceptually similar approach
of applying either calibrated Laplace or Gaussian noise to
the parameters of the model at the end of each EM itera-
tion, but demonstrates significantly better privacy guarantees
through composition via the moments accountant and zero-
concentrated differential privacy (zCDP) (5). Given that
their work makes no significant assumptions about the task
and provides an empirical evaluation of their methods, this
is likely the closest in nature to our approach. As such, is
included as a baseline in our experimental results.

In addition, we take note of more classical approaches to
the task of privacy-preserving density estimation. One of
the simplest yet most widely used methods for density esti-
mation is through the use of histograms, and previous work
(7) has investigated their private estimation. Unfortunately,
such an approach scales poorly with the dimension and
complexity of the distribution while asserting an unrealistic
discretization of the space. Kernel density estimation is
another closely related approach, often characterized as the
smooth analog to the classical discrete histogram. The work
of (16) proposes a method for privately querying the den-
sity of such an estimator through the addition of calibrated
Gaussian noise. As a non-parametric approach, it has the
drawback that it requires storage of the entire dataset at test
time to enable querying (proving impractical for large-scale
datasets) while still degrading similarly with dimension.

B. Moments Accountant
The simplest version of differential privacy composition is
that the privacy parameters ε and δ simply sum across mul-
tiple applications. Although to achieve a tighter bound, (1)
also introduced the moments accountant which has been the
standard approach to privacy composition across multiple
gradient update steps in DP-SGD. To describe the moments
accountant, given an algorithm M and two neighboring
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datasets D,D′, first we denote the privacy loss of a partic-
ular outcome o as L(o) = log(Pr(MD = o)/Pr(MD′ =
o)). The moments accountant calculates a privacy bud-
get by means of bounding the moments of the privacy
loss random variable L(o). That is, if we consider the log
of the moment generating function (MGF) of the privacy
loss random variable evaluated at λ, i.e. αM(λ;D,D′) =

logEo∼MD [eλL
(o)

], the worst case over all neighboring
datasets maxD,D′ αM(λ;D,D′) composes linearly across
multiple mechanisms (Theorem 2.1 (1)) and allows for con-
version to an associated (ε, δ)-differential privacy guarantee
through the relation δ = minλ exp[αM(λ)− λε].

C. Additional Results

Figure 3. Synthetically generated Life Science data for ε = 2, 4,
and 6, projected to two dimensions via PCA. Top row: DP-NF.
Bottom row: DP-EM. Right: Real data. Note the compression to
the left of the distribution of real data that is captured by DP-NF
as ε increases, but not present in the synthetic data generated by
DP-EM.

In addition to the previously provided figures, we also pro-
vide in Figure 4 a visualization of generated synthetic data
projected from ten to two dimensional space using PCA
for both models (DP-NF and DP-EM). Although signifi-
cant information is lost when projecting down to a lower
dimensional space, one may still observe broad similarities
concerning the distribution learned by DP-NF over DP-EM
in comparison to the real data.

D. Private Initialization of Normalization
Layers

Intermediate normalization layers such as batch normaliza-
tion (18) and activation normalization (22) have been shown
to improve the stability of normalizing flow models. Al-
though in our context, batch normalization is incompatible
with our approach given that batch statistics are shared when
computing the forward pass of the layer, precluding the abil-
ity to calculate truly independent per-example gradients as
required by NoisySGD.

Although, activation normalization does not exhibit this lim-
itation as no such batch statistics are calculated. Recall
that activation normalization is characterized by an offset

Figure 4. Dimension-wise histograms of synthetically generated
Life Science data, superimposed over real data, for ε = 0.5 and
δ = 10−4. Top two rows: DP-EM. Bottom two rows: DP-NF.

and scaling of its inputs feature-wise by a learned set of
parameters b and w, i.e. y(i) ← (x(i) − b)/w. In prac-
tice, typically these parameters are set via data-dependent
initialization (30) by computing a forward pass on a sam-
pled batch of data and setting b andw to be the per-feature
means and standard deviations of the inputs it had observed
respectively.

Given that these statistics are not obfuscated in any manner,
naturally this compromises privacy. A potential means to
address this limitation is via a repeated application of noise
when computing such statistics. This process is outlined
in Algorithm 2, where clip(X, c̃) clips the values ofX to
be in the range [−c̃/2, c̃/2], µ(X) computes the feature-
wise mean ofX , σ(X) computes the feature-wise standard
deviation ofX , and R is some data-independent parameter
initialization method which maps standardized inputs to
standardized outputs in expectation, e.g. He initialization
(17).

Algorithm 2 DP-NF-INIT, data dependent initialization of
activation normalization layers

1: Input: DatasetX = {x(1), . . . ,x(n)}, transformation
f (e.g. MADE (14)), number of layers K, initialization
privacy budget ε, initialization privacy tolerance δ, data-
independent parameter initialization method R (e.g. He
initialization (17)).

2: {θ1, . . . ,θK} ← R()
3: for k = 1, . . . ,K do
4: X ← clip(fθ(k)(X), c̃)

5: b(k) ← µ(X) + Lap(
2
√

4K ln(1/δ)4µ̂
ε )

6: w(k) ← σ(X) + Lap(
2
√

4K ln(1/δ)4σ̂
ε )

7: X ← (X − b(k))/w(k)

8: end for
9: Output concat θ(1), b(1),w(1), . . . ,θ(K), b(K),w(K)



Differentially Private Normalizing Flows

The privacy guarantee of this initialization scheme is (ε, δ)-
differentially private as an immediate application of the
Laplace mechanism paired with advanced composition (12).

Although the utility of activation normalization layers is
quite evident, the original work (22) proposing such layers
cited little evidence to support the idea that data-dependent
initialization yielded statistically significant improvements
over a default initialization scheme, i.e. b← 0 andw ← 1.
In our experimentation, we observed little distinction in con-
texts where the input data was assumed to be standardized
and parameters were initialized to maintain variance be-
tween layers. Despite this, we include the approach for com-
pleteness for potential future contexts where data-dependent
initialization of such parameters deems necessary.


