
Normalizing Flows Across Dimensions

Edmond Cunningham 1 Renos Zabounidis 1 Abhinav Agrawal 1 Ina Fiterau 1 Daniel Sheldon 1

Abstract

Real-world data with underlying structure, such
as pictures of faces, is hypothesized to lie on a
low-dimensional manifold. This manifold hypoth-
esis has motivated state-of-the-art generative al-
gorithms that learn low-dimensional data repre-
sentations. Unfortunately, a popular generative
model, normalizing flows, cannot take advantage
of this. Normalizing flows are based on succes-
sive variable transformations that, by design, are
incapable of learning lower-dimensional represen-
tations. In this paper, we introduce noisy injec-
tive flows (NIF), a generalization of normalizing
flows that can go across dimensions. NIF explic-
itly map the latent space to a learnable manifold
in a high-dimensional data space using injective
transformations. We further employ an additive
noise model to account for deviations from the
manifold and identify a stochastic inverse of the
generative process. Empirically, we demonstrate
that a simple application of our method to existing
flow architectures can significantly improve sam-
ple quality and yield separable data embeddings.

1. Introduction
Normalizing flows (Rezende & Mohamed, 2015; Papa-
makarios et al., 2019) are a popular tool in probabilistic
modeling. However, they lack the ability to learn low-
dimensional representations of the data and decouple noise
from the representations. This could be a contributing factor
to why normalizing flows lag behind other methods at gen-
erating high quality images (Kingma & Dhariwal, 2018; Ho
et al., 2019; Razavi et al., 2019; Karras et al., 2020; Song &
Ermon, 2019). The manifold hypothesis (Fefferman et al.,
2013) conjectures that real-world images, such as faces,
lie on a low-dimensional manifold in a high-dimensional
space. Consequently, one can expect that normalizing flows

1Univertisy of Massachussets. Correspondence to: Edmond
Cunningham <edmondcunnin@cs.umass.edu>.

Second workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models (ICML 2020), Virtual Con-
ference

may not be able to properly represent data that satisfies the
manifold hypothesis.

The simplest method of obtaining a low-dimensional repre-
sentation is by learning to map a lower dimensional vector
to the data. The image of such a transformation will be a
manifold in the data space (Ratliff, 2014). If the transfor-
mation is sufficiently expressive and the dimensionality of
its domain matches that of the conjectured manifold, then
the transformation may be able to learn the data manifold.
However if the transformation is bijective and the dimen-
sionality of its domain is too large, it can at best learn a
superset of the data manifold, and as a result map to points
that are not data. Normalizing flows use bijective functions
that preserve dimension, so they are fundamentally inca-
pable of perfectly modeling data that satisfies the manifold
hypothesis.

In this paper we introduce a generalization of normalizing
flows which we call noisy injective flows. Noisy injective
flows use injective functions to map across dimensions and
a noise model to account for deviations from its learned
manifold. We show that this construction is a natural exten-
sion of normalizing flows that retains a form of invertibility
while also decoupling its representation of data from extra-
neous noise. We also provide an instance of noisy injective
flows that can be incorporated into existing normalizing
flow models to improve sample clarity without degrading
log-likelihood values. Our experiments show that noisy in-
jective flows learn better representations of images and can
yield clearer generated images than standard normalizing
flows.

2. Related Work
The bulk of normalizing flows (Rezende & Mohamed, 2015)
research focuses on developing more powerful invertible
layers (Ho et al., 2019). We, on the other hand, focus on
improving the capabilities of normalizing flows that work
across dimensions. Gemici et al. (2016) were the first to
apply normalizing flows across dimensions. Their problem
was constrained to when data was known to lie exactly
on a manifold whose form in known analytically, but they
did not investigate how to learn the manifold, nor how to
treat data that is not on the manifold. The recent work of
Brehmen & Cranmer (2020) learns this manifold using a

Normalizing Flows Across Dimensions

deterministic treatment of data that lies off the manifold
and a term to penalize its distance from data, but does not
provide a unified objective to perform maximum likelihood
learning. Kumar et al. (2020) introduced a similar idea based
on injective flows, using a novel lower bound on the injective
change of variable formula for maximum likelihood training.
However, the authors note that their method does not work
with data that does not lie exactly on the learned manifold.

Our work has similar features to variational autoencoders
(Kingma & Welling, 2014) with Gaussian decoders. The
generative process we present can be seen as a special case
of a variational autoencoder, but our use of injective func-
tions, and our definition of a stochastic inverse makes our
method resemble normalizing flows more closely. Dai &
Wipf (2019) consider the converse problem of ours – how to
use a method designed to model density around a manifold
(VAEs with Gaussian decoders) for maximum likelihood
learning, when data is exactly on a manifold. We consider
how to take an algorithm designed to learn density on a
manifold (injective flows) for maximum likelihood learning
when data lies around a manifold.

3. Noisy Injective Flows
Noisy injective flows are a generalization of normalizing
flows that can be used to create normalizing flows across
dimensions. We start with a general change of variable
formula as the foundation for our method and show that
normalizing flows are derived as a special case. Refer to
section 4 for the form we use in experiments.

3.1. Change of variable formula across dimensions

Let z ∼ pz(z), z ∈ Z = RM and let fθ : Z → X ⊆ RN
be an injective function parametrized by θ. For x′ = fθ(z),
the marginal distribution over x′ can be obtained using a
generic change of variable equation (Au & Tam, 1999):

px′(x
′) =

∫
RM

pz(z)δ(x
′ − fθ(z))dz (1)

When N = M , we can integrate over z analytically to
recover the well-recognized expression from normalizing
flows (Rezende & Mohamed, 2015; Papamakarios et al.,
2019):

px′(x
′) =

∫
RN

δ(x′ − u)pz(f
−1
θ (u))

∣∣∣∣df−1
θ (u)

du

∣∣∣∣du (2)

= pz(f
−1
θ (x′))

∣∣∣∣df−1
θ (x′)

dx′

∣∣∣∣ (3)

But when the dimensionality of x is greater than the the
dimensionality of z, we can no longer analytically integrate
because the integral in Eq. (2) will now be overMθ, the
manifold that is the image of fθ, instead of RN . However,

for points that lie exactly on a manifold, we get a similar
change of variable formula:

px′(x
′) = pz(f

−1
θ (x′))

∣∣∣∣df−1
θ (x′)

dx′
df−1
θ (x′)

dx′

T ∣∣∣∣ 12 , x′ ∈Mθ

(4)

This transformation changes dimensionality, so in-
stead of a single Jacobian determinant we must use

|df
−1
θ (u)

du

df−1
θ (u)

du

T

| 12 to correctly relate the infinitesimal vol-
umes dz and du (Boothby, 1975). While this form gives us
a normalizing flows like expression to evaluate, it may not
be suitable for general probabilistic modeling; real data may
not lie exactly on a manifold but close to it. To account for
such deviations, we propose an additive noise model.

3.2. Adding noise to Injective Flows

In Section 3.1, we used x′ to denote the transformation of z.
We define a new variable, x, as the sum of noise ε ∼ pε(ε)
and x′: x = x′ + ε. As noise is assumed to be independent
of x′, the density px can be expressed using the convolution
operator, denoted as *:

px(x) = px′(x) ∗ pε(ε) =

∫
RM

pz(z)pε(x− fθ(z))dz

(5)

We note that there is a joint distribution in Eq.(5) over latent
variable z and observed variable x, such that p(x, z) =
pz(z)pε(x − fθ(z)). For a given z, the accompanying
generative story of x is: evaluate x′ = fθ(z) and return
x = x′ + ε where fθ is the parameterized injective function
and ε ∼ pε(ε). The introduction of pε(ε) renders our gen-
erative story non-deterministic. Consequently, there is no
deterministic method to invert x – we must instead construct
a distribution q(z|x) to map to the latent space. In the spirit
of normalizing flows, we choose q(z|x) to be the stochastic
inverse of our generative process.

3.3. Stochastic Inverse

Noisy injective flows as discussed thus far are well specified
generative models but lack a clear inference scheme. We
propose a specific choice for q(z|x) to invert the generative
process of pθ(x|z):

qθ(z|x) =
pθ(x|z)∫
pθ(x|z′)dz′

(6)

Note that this is not same as the posterior of the original
model: Eq. (6) is the normalized likelihood distribution.
Alternatively, one can view this as the posterior distribution
for an improper prior on z.

The main difference between the stochastic inverse and
the posterior distribution is that the stochastic inverse does

Normalizing Flows Across Dimensions

not take into account the prior pz(z). qθ(z|x) infers z
solely based on how pθ(x|z) generates x. As a result, the
stochastic inverse satisfies the analogy pθ(x|z) is to fθ(z)
as qθ(z|x) is to f−1

θ (x). In addition to extending the notion
of an inverse for our generative process, qθ(z|x) also affords
an interpretable lower bound on the log-likelihood.

3.4. Lower bounding log-likelihood

Variational inference (VI) (Jordan et al., 1998) is a leading
posterior approximation technique that use a parameter-
ized distribution family qφ to approximate the true poste-
rior p(z|x). In VI, one maximizes the lower bound to the
marginal log-likelihood yielding an optimization problem
equivalent to minimizing the Kullback–Leibler divergence
from qφ(z|x) to the true posterior. We use the ELBO to
lower bound the log-likelihood, but do not learn qφ. Instead,
we use the stochastic inverse qθ in place of the approxi-
mate posterior. This choice simplifies the ELBO into two
interpretable terms, one that defines log-likelihood overMθ

and one that will penalize aMθ that is far from data. This
choice new lower bound is specific to our model and no-
tably cancels out the Eq[log p(x|z)] term that appears in the
standard ELBO decomposition.

L = Eq
[
log pz(z)

]︸ ︷︷ ︸
Likelihood Term

+ log

∫
pθ(x|z′)dz′︸ ︷︷ ︸

Manifold Term

(7)

We expand on the manifold term in the appendix. Related
work on probabilistic models with manifolds consider log-
likelihood and separate term to capture distance from the
manifold to data (Brehmen & Cranmer, 2020; Kumar et al.,
2020). Our uses both of these terms in a statistically justified
objective. We note that the difference between log px(x)
and L will always be nonzero because the construction
of qθ(z|x) yields KL[qθ(z|x)||p(z|x)] > 0. We do not
find this to be problematic in practice and note that it is
commonplace in VI to choose a model class for qφ that
does not include the true posterior, such as mean field VI
(Hoffman et al., 2013).

4. Gaussian Noisy Injective Flows
We next give an instance of a noisy injective flow that is
based on a Gaussian distribution. We first describe the
algorithm, then describe how it can be easily modified to
scale to large images, incorporate non-linearities and yield
a closed form log-likelihood. We choose pε and fθ so that
we can sample from pθ(x|z) and qθ(z|x) efficiently and
compute

∫
pθ(x|z)dz in closed form:

pε(ε) = N (ε|b,Σ), fθ(z) = Az,A ∈ RN×M ,M ≤ N (8)

Although this choice makesMθ a hyperplane, we can still
create complex manifolds by transforming x with a normal-
izing flow. Below we give the closed form expressions of

NF

t=0.000 t=0.714 t=1.429 t=2.143 t=2.857 t=3.571 t=4.286 t=5.000

NI
F

Figure 1. Samples from priors with increasing variance (temper-
ature). The top and bottom rows are standard normalizing flows
and our method with a latent state size of 128 respectively. Our
method maps more of the latent space to the space of images than
standard normalizing flows.

each quantity (we drop the dependence on θ for brevity. See
the appendix for a full derivation):

p(x|z) = N (x|Az + b,Σ), q(z|x) = N (z|Λ−1u,Λ−1),

log

∫
p(x|z)dz = logZz − logZx, (9)

where

µ = x− b, Λ = ATΣ−1A, u = ATΣ−1µ,

logZz =
1

2
(uTΛ−1u− log |Λ|+ dim(z) log(2π)),

logZx =
1

2
(µTΣ−1µ+ log |Σ|+ dim(x) log(2π))

To understand the role of log
∫
p(x|z)dz better, we make

the simplifying assumption that Σ = σI .

log

∫
p(x|z)dz = − 1

2σ
µT (µ−

Projection of µ ontoMθ︷ ︸︸ ︷
AT (ATA)−1Aµ)

− 1

2σ
log |ATA| − dim(x)− dim(z)

2
log(2πσ)

We see that maximizing log
∫
p(x|z)dz will encourage the

manifold to be close to data while accounting for the volume
change of z. In the appendix we describe simple modifica-
tions that can improve the runtime and space complexity
for image generation, incorporate non-linearities and yield
a closed form marginal probability for Gaussian NIFs.

5. Experiments
The goal of our experiments is to demonstrate two main
points: (1) low-dimensional latent states can significantly
improve the learned representation of data over normaliz-
ing flows and (2) a single scalar value can be used control
the sample quality of a trained NIF to ensure the NIF out-
performs a comparable NF. Our baseline normalizing flow
uses a similar architecture to GLOW (Kingma & Dhariwal,
2018). To isolate the effect of using a low-dimensional la-
tent state, create the NIF models with the same architecture
as the baseline and add a single dimension change at the
prior. We detail our experimental setup in the appendix.
All of our code was written using the JAX (Bradbury et al.,
2018) Python library.

Normalizing Flows Across Dimensions

NF NIF-64

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Figure 2. UMAP supervised embeddings of latent state of CIFAR
test set. Our method with a latent dimensionality of 64 on the right
and a baseline normalizing flow on the left.

NF
NI

F

Figure 3. Samples from a baseline normalizing flow (top) and a
comparable noisy injective flow (bottom) with latent state dimen-
sionality of 128. NIF can produce clear images by sampling di-
rectly on the learned manifold (s = 0.0).

5.1. Low dimensional representations

Noisy injective flows bring the advantages of low-
dimensional representations to normalizing flows. We show
that using low-dimensional latent states can help map more
of its domain to faces, and also yield more separable data
embeddings.

Both normalizing flows and noisy injective flows are trained
to map a unit Gaussian in the latent space to data samples
from the true data distribution. However, one would expect
that a good representation of data is able to generalize past
a unit Gaussian and learn faces that are not from the dataset.
We employ temperature modeling (Kingma & Dhariwal,
2018; Chen et al., 2019) to generate samples from more of
the domain. Temperature modeling achieves this by scaling
the variance of the prior over z by a scalar, t. When t = 1.0,
we sample from the the original models. We see in Fig. 1
that our method is able to generate faces for a large range
of temperatures while normalizing flows can only generate
faces for values of t under 1.0.

Noisy injective flows also provide embeddings of the data
that are more easily separable. We use supervised UMAP
(McInnes et al., 2018) to produce a low-dimensional embed-
ding of the CIFAR-10 (Krizhevsky) test set. Fig. 2 shows
that the NIF embedding cleanly separates the data from
different classes while the NF embeddings cannot.

Table 1. Fréchet Inception Dis-
tance (lower is better)

Model Fashion MNIST CIFAR-10 CelebA

NF 42.77 78.58 63.07
NIF-64 23.97 80.15 30.96
NIF-128 23.23 79.38 34.46
NIF-256 24.84 78.44 33.95
NIF-512 25.34 77.47 35.96

Table 2. Bits per dimension
(lower is better)

Model Fashion MNIST CIFAR-10 CelebA

NF 1.518 1.072 0.852
NIF-64 1.506 1.069 0.839
NIF-128 1.506 1.071 0.835
NIF-256 1.515 1.073 0.830
NIF-512 1.523 1.070 0.838

5.2. Controlling deviations from the manifold

We show that a single scalar parameter introduced at test
time can provide a simple method to control deviations from
the manifold. The test time scalar parameter, s, controls
the variance of a Gaussian NIF layer: x ∼ N (x|Az, sΣ).
There are two notable settings of s: s = 1.0 leaves the
model unchanged while s = 0 corresponds to the injective
flow defined over the learned manifoldMθ.

Samples from our model when s = 0.0 are generated di-
rectly on our learned manifoldMθ. In Fig. 3, we compare
samples from the CelebA dataset (Liu et al., 2015) from
the baseline normalizing flow and from our method with
s = 0.0. The samples generated on the manifold of the NIF
are clearer and exhibit more cohesive facial structure than
the samples from the normalizing flow. Samples from the
manifold exhibit the high level features that our model has
learned. In the appendix we provide more samples from
the manifold of models learned for Fashion MNIST and
CIFAR-10.

At s = 1.0, we can evaluate if the latent dimensionality has
a detrimental effect on log-likelihood. We see in table 2 that
this is not the case as noisy injective flows perform similar
to or slightly better than normalizing flows in bits per dim
across many latent state sizes and datasets.

6. Conclusion
We have presented a new probabilistic model, noisy injective
flows, that generalizes normalizing flows. The use of a
stochastic inverse allows the method to transform across
dimensions while maintaining the strengths of normalizing
flows. We have demonstrated that our method was able to
learn representations of data that are both low-dimensional
and better than those learned by NFs. We also show that our
model can be tuned to generate a wider variety of higher
quality images than standard NFs. Noisy injective flows
serve to bridge the gap between normalizing flows and state-
of-the-art image generating methods while retaining the
advantages of normalizing flows.

Normalizing Flows Across Dimensions

References
Au, C. and Tam, J. Transforming Variables Using the Dirac

Generalized Function. The American Statistician, 53:
270–272, 1999.

Boothby, W. An Introduction to Differentiable Mani-
folds and Riemannian Geometry, volume 63 of Pure
and Applied Mathematics. Elsevier, 1975. ISBN 978-
0-12-116050-0. doi: 10.1016/S0079-8169(08)X6065-
9. URL https://linkinghub.elsevier.com/
retrieve/pii/S0079816908X60659.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., and Wanderman-Milne, S. JAX: com-
posable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax.

Brehmen, J. and Cranmer, K. Flows for simultaneous mani-
fold learning and density estimation. April 2020. URL
https://arxiv.org/pdf/2003.13913.pdf.

Chen, T. Q., Behrmann, J., Duvenaud, D., and Jacobsen,
J. Residual flows for invertible generative modeling.
In Wallach, H. M., Larochelle, H., Beygelzimer,
A., d’Alché-Buc, F., Fox, E. B., and Garnett, R.
(eds.), Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 8-14 Decem-
ber 2019, Vancouver, BC, Canada, pp. 9913–9923,
2019. URL http://papers.nips.cc/paper/
9183-residual-flows-for-invertible-
generative-modeling.

Dai, B. and Wipf, D. P. Diagnosing and enhancing VAE
models. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=B1e0X3C9tQ.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Den-
sity estimation using real NVP. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=HkpbnH9lx.

Fefferman, C., Mitter, S., and Narayanan, H. Testing the
Manifold Hypothesis. arXiv:1310.0425 [math, stat],
December 2013. URL http://arxiv.org/abs/
1310.0425.

Gemici, M. C., Rezende, D., and Mohamed, S. Normaliz-
ing Flows on Riemannian Manifolds. arXiv:1611.02304

[cs, math, stat], November 2016. URL http://
arxiv.org/abs/1611.02304.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In Guyon, I.,
von Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R.,
Vishwanathan, S. V. N., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA, pp.
6626–6637, 2017. URL http://papers.nips.cc/
paper/7240-gans-trained-by-a-two-
time-scale-update-rule-converge-to-a-
local-nash-equilibrium.

Ho, J., Chen, X., Srinivas, A., Duan, Y., and Abbeel, P.
Flow++: Improving flow-based generative models with
variational dequantization and architecture design. In
Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings
of the 36th International Conference on Machine Learn-
ing, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning
Research, pp. 2722–2730. PMLR, 2019. URL http:
//proceedings.mlr.press/v97/ho19a.html.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. W.
Stochastic variational inference. J. Mach. Learn. Res.,
14(1):1303–1347, 2013. URL http://dl.acm.org/
citation.cfm?id=2502622.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and
Saul, L. K. An Introduction to Variational Meth-
ods for Graphical Models. In Jordan, M. I.
(ed.), Learning in Graphical Models. Springer Nether-
lands, Dordrecht, 1998. ISBN 978-94-010-6104-
9 978-94-011-5014-9. doi: 10.1007/978-94-011-
5014-9_5. URL http://link.springer.com/
10.1007/978-94-011-5014-9_5.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progressive
growing of gans for improved quality, stability, and varia-
tion. In 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. OpenRe-
view.net, 2018. URL https://openreview.net/
forum?id=Hk99zCeAb.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen,
J., and Aila, T. Analyzing and Improving the Im-
age Quality of StyleGAN. arXiv:1912.04958 [cs, eess,
stat], March 2020. URL http://arxiv.org/abs/
1912.04958.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. In Bengio, S., Wallach,
H. M., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,

https://linkinghub.elsevier.com/retrieve/pii/S0079816908X60659
https://linkinghub.elsevier.com/retrieve/pii/S0079816908X60659
http://github.com/google/jax
https://arxiv.org/pdf/2003.13913.pdf
http://papers.nips.cc/paper/9183-residual-flows-for-invertible-generative-modeling
http://papers.nips.cc/paper/9183-residual-flows-for-invertible-generative-modeling
http://papers.nips.cc/paper/9183-residual-flows-for-invertible-generative-modeling
https://openreview.net/forum?id=B1e0X3C9tQ
https://openreview.net/forum?id=B1e0X3C9tQ
https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx
http://arxiv.org/abs/1310.0425
http://arxiv.org/abs/1310.0425
http://arxiv.org/abs/1611.02304
http://arxiv.org/abs/1611.02304
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
http://proceedings.mlr.press/v97/ho19a.html
http://proceedings.mlr.press/v97/ho19a.html
http://dl.acm.org/citation.cfm?id=2502622
http://dl.acm.org/citation.cfm?id=2502622
http://link.springer.com/10.1007/978-94-011-5014-9_5
http://link.springer.com/10.1007/978-94-011-5014-9_5
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
http://arxiv.org/abs/1912.04958
http://arxiv.org/abs/1912.04958

Normalizing Flows Across Dimensions

and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018,
3-8 December 2018, Montréal, Canada, pp. 10236–
10245, 2018. URL http://papers.nips.cc/
paper/8224-glow-generative-flow-with-
invertible-1x1-convolutions.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In Bengio, Y. and LeCun, Y. (eds.), 2nd Interna-
tional Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014. URL http://arxiv.org/
abs/1312.6114.

Krizhevsky, A. Learning Multiple Layers of Features from
Tiny Images. pp. 60.

Kumar, A., Poole, B., and Murphy, K. Regularized Au-
toencoders via Relaxed Injective Probability Flow. In
AISTATS, 2020.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

McInnes, L., Healy, J., Saul, N., and Grossberger, L. Umap:
Uniform manifold approximation and projection. The
Journal of Open Source Software, 3(29):861, 2018.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing Flows for
Probabilistic Modeling and Inference. arXiv:1912.02762
[cs, stat], December 2019. URL http://arxiv.org/
abs/1912.02762.

Ratliff, N. Multivariate Calculus II: The geom-
etry of smooth maps, 2014. URL https:
//ipvs.informatik.uni-stuttgart.de/
mlr/wp-content/uploads/2014/12/
mathematics_for_intelligent_systems_lecture6_notes.pdf.

Razavi, A., van den Oord, A., and Vinyals, O. Generating
diverse high-fidelity images with VQ-VAE-2. In
Wallach, H. M., Larochelle, H., Beygelzimer, A.,
d’Alché-Buc, F., Fox, E. B., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pp. 14837–14847, 2019.
URL http://papers.nips.cc/paper/9625-
generating-diverse-high-fidelity-
images-with-vq-vae-2.

Rezende, D. J. and Mohamed, S. Variational inference
with normalizing flows. In Bach, F. R. and Blei, D. M.
(eds.), Proceedings of the 32nd International Confer-
ence on Machine Learning, ICML 2015, Lille, France,

6-11 July 2015, volume 37 of JMLR Workshop and
Conference Proceedings, pp. 1530–1538. JMLR.org,
2015. URL http://proceedings.mlr.press/
v37/rezende15.html.

Song, Y. and Ermon, S. Generative modeling by esti-
mating gradients of the data distribution. In Wallach,
H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc,
F., Fox, E. B., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pp. 11895–11907, 2019.
URL http://papers.nips.cc/paper/9361-
generative-modeling-by-estimating-
gradients-of-the-data-distribution.

http://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions
http://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions
http://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1912.02762
http://arxiv.org/abs/1912.02762
https://ipvs.informatik.uni-stuttgart.de/mlr/wp-content/uploads/2014/12/mathematics_for_intelligent_systems_lecture6_notes.pdf
https://ipvs.informatik.uni-stuttgart.de/mlr/wp-content/uploads/2014/12/mathematics_for_intelligent_systems_lecture6_notes.pdf
https://ipvs.informatik.uni-stuttgart.de/mlr/wp-content/uploads/2014/12/mathematics_for_intelligent_systems_lecture6_notes.pdf
https://ipvs.informatik.uni-stuttgart.de/mlr/wp-content/uploads/2014/12/mathematics_for_intelligent_systems_lecture6_notes.pdf
http://papers.nips.cc/paper/9625-generating-diverse-high-fidelity-images-with-vq-vae-2
http://papers.nips.cc/paper/9625-generating-diverse-high-fidelity-images-with-vq-vae-2
http://papers.nips.cc/paper/9625-generating-diverse-high-fidelity-images-with-vq-vae-2
http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v37/rezende15.html
http://papers.nips.cc/paper/9361-generative-modeling-by-estimating-gradients-of-the-data-distribution
http://papers.nips.cc/paper/9361-generative-modeling-by-estimating-gradients-of-the-data-distribution
http://papers.nips.cc/paper/9361-generative-modeling-by-estimating-gradients-of-the-data-distribution

Normalizing Flows Across Dimensions

A. Derivations
A.0.1. NOTATION

z : Latent variable in RM

Z : Domain of z. Equal to RM

pz(z) : Prior over latent space

x : Ambient space random variable (data) in RN

X : Domain of x
fθ(z) : Injective function that maps latent space to ambient (data) space, parametrized by θ

Mθ : The manifold in RN that is the image of fθ(z)
p′x(x) : Probability density function overMθ

px(x) : Probability density function over RN

pε(ε) : Noise model overMθ

pθ(x|z) : Conditional likelihood of data given latent space. Equal to pε(x− fθ(z))

qθ(z|x) : Stochastic inverse of pθ(x|z). Equal to
pθ(x|z)∫
pθ(x|z′)dz′

A.1. Equation 1 - Change of variable formula

p′x(x′) =
∂

∂x′1
· · · ∂

∂x′N
P (X ≤ x′) (10)

=
∂

∂x′1
· · · ∂

∂x′N
P (fθ(Z) ≤ x′) (11)

=
∂

∂x′1
· · · ∂

∂x′N

∫
{z|fθ(z)≤x′}

p(z)dz (12)

=

∫
RM

p(z)
∂

∂x′1
· · · ∂

∂x′N
I[fθ(z) ≤ x′]dz (13)

=

∫
RM

p(z)δ(x′ − fθ(z))dz (14)

This general change of variable equation describes the probability density function of a transformed random variable. When
fθ) is invertible and M = N , we can recover the standard normalizing flows change of variable formula as seen in equation
3.

A.2. Equation 5 - Noisy injective flows marginal distribution

px(x) = px′(x) ∗ pε(ε) (15)

=

∫
px′(x− ε)pε(ε)dε (16)

=

∫ ∫
pz(z)δ(x− ε− fθ(z))dzpε(ε)dε (17)

=

∫
pz(z)

∫
δ(x− fθ(z)− ε)pε(ε)dεdz (18)

we use the sifting property of the delta function to evaluate the integral

=

∫
pz(z)pε(x− fθ(z))dz (19)

Normalizing Flows Across Dimensions

In section 3.2 we showed that the convolved pdf is the marginal distribution over x when the joint is defined as p(x, z) =
pz(z)pε(x− fθ(z)). However there is a more interpretable form of this equation that follows by letting x′ = fθ(z):

=

∫
Mθ

pε(x− x′)pz(f−1
θ (x′))|

df−1
θ (x′)

dx′
df−1
θ (x′)

dx′

T

| 12 dx′ (20)

This resulting equation has an intuitive explanation - the pdf of noisy injective flows is defined as the expected value, over
the noise model constrained to the learned manifold, of the injective change of variable formula from Eq. (4). Although this
form has no practical use, it serves to further justify the construction of noisy injective flows.

A.3. Modes of the stochastic inverse are pseudo inverses

The modes of q(z|x) are at the values of z that maximize log q(z|x). If we assume that pε = N(ε|0,Σ), we have:

argmax
z

log qθ(z|x) = argmax
z

log pθ(x|z) + log

∫
pθ(x|z′)dz′ (21)

= argmax
z

log pθ(x|z) (22)

= argmax
z

log pε(x− fθ(z)) (23)

= argmax
z

logN(x− fθ(z)|0,Σ) (24)

= argmax
z
−1

2
(x− fθ(z))TΣ−1(x− fθ) (25)

= argmax
z
−1

2
||x− fθ(z)||2Σ−1 (26)

= argmin
z
||x− fθ(z)||2Σ−1 (27)

To appreciate this result, consider a data-point x not on the manifold. One can expect the z corresponding to the point on the
manifold that is closest to x to be a good representation for x. Our choice of qθ(z|x) captures this intuition and places high
probability mass on such points on the manifold.

A.4. Equation 7 - Evidence lower bound

L =

∫
qθ(z|x) log

(pθ(x, z)
qθ(z|x)

)
dz (28)

=

∫
qθ(z|x) log

(pθ(x|z)pz(z)
pθ(x|z)∫
pθ(x|z′)dz′

)
dz (29)

=

∫
qθ(z|x) log

(
pz(z)

∫
pθ(x|z′)dz′

)
dz (30)

= Eqθ(z|x)[log pz(z)]︸ ︷︷ ︸
Likelihood Term

+ log

∫
pθ(x|z)dz︸ ︷︷ ︸

Manifold Term

(31)

The evidence lower bound has two intuitive components - a term that is the expected log likelihood on the manifold, and a
term that encourages the manifold to be close to data. To see the importance of the manifold term more clearly, we can write
it as follows: ∫

pθ(x|z)dz =

∫
x′∈Mθ

pε(x− x′)
∣∣∣∣df−1

θ (x′)

dx′
df−1
θ (x′)

dx′

T ∣∣∣∣ 12 dx′ (32)

This integral describes the likelihood of data over the manifold. It does not use the prior, pz(z), and is purely a term that
depends on the manifold, given the noise model pε.

Normalizing Flows Across Dimensions

A.5. Equation 9 - Gaussian NIF

N (x|Az + b,Σ)

= exp{−1

2
(x−Az − b)TΣ−1(x−Az − b)− 1

2
log |Σ| − dim(x)

2
log(2π)} (33)

= exp{−1

2
(x− b︸ ︷︷ ︸

µ

−Az)TΣ−1(x− b−Az)− 1

2
log |Σ| − dim(x)

2
log(2π)} (34)

= exp{−1

2
(µ−Az)TΣ−1(µ−Az)− 1

2
log |Σ| − dim(x)

2
log(2π)} (35)

= exp{−1

2
zTATΣ−1Az + zTATΣ−1µ− 1

2
[µTΣ−1µ+ log |Σ|+ dim(x) log(2π)]︸ ︷︷ ︸

logZx

} (36)

= N−1(z|ATΣ−1A,ATΣ−1µ)

exp{1

2
[µTΣ−1A(ATΣ−1A︸ ︷︷ ︸

Λ

)−1ATΣ−1µ︸ ︷︷ ︸
u

− log |ATΣ−1A|+ dim(z) log(2π)]} exp{− logZx} (37)

= N−1(z|Λ, u) exp{1

2
[uTΛ−1u− log |Λ|+ dim(z) log(2π)]︸ ︷︷ ︸

logZz

} exp{− logZx} (38)

= N (z|Λ−1u,Λ−1) exp{logZz − logZx} (39)

We use the names logZz and logZx because the values they represent are the log partition functions of N (z|Λ−1u,Λ−1)
and N (x|Az + b,Σ) respectively.

A.6. Nearest-neighbors up-sampling for Gaussian NIF

In general it is difficult to construct an A that can be constructed using less than O(dim(z) dim(x)) space or yields a Λ that
can be inverted in better than O(dim(z)3) time. A situation where a naive implementation of Gaussian NIFs can become
intractible is in generating high quality images. Nearest-neighbor upsampling for progressive growing of images (Karras
et al., 2018) can alleviate this problem. Nearest-neighbor upsampling inserts a copy of each row and column in between an
image’s pixels. This process can be written as a matrix vector product when we flatten the input image. The resulting Λ
from equation 8 is block diagonal and can therefore be inverted in O(dim(z)) time. As a result, the complexity of an NIF
with Nearest-neighbor upsampling becomes O(dim(z)).

A.7. Stochastic coupling for Gaussian NIF

We can introduce non-linearities to Gaussian noisy injective flows using coupling transforms (Dinh et al., 2017). Affine
coupling is an invertible transformation that splits a vector x into two components, (x1, x2). It sets z1 = x1, uses non-linear
functions s and t to get calculate z2 = s(x1)x2 + t(x1) and then returns z = (z1, z2). The Jacobian determinant is equal to∑

log |s(x1)|i.

We can extend the notion of coupling to stochastic layers. Like in affine coupling, the input vector is split in two with one
part unchanged. However, we sample from a conditional distribution instead of computing a deterministic function: z1 = x1,
x2 ∼ pθ(x2|z2;x1) and x1 = z1, z2 ∼ qθ(z2|x2;x1), and use the manifold term, log

∫
pθ(x2|z2;x1)dz2, instead of the

Jacobian determinant. A tractable realization of stochastic coupling can be achieved with two Gaussian NIFs. Its probability
density function is described as follows:

p(x1, x2) =

∫ ∫
p(z1, z2)N (x1|A1z1 + b(x2),Σ(x2))N (x2|A2z2 + b(z1),Σ(z1))dz1dz2 (40)

Normalizing Flows Across Dimensions

A.8. Closed form log-likelihood of Gaussian NIF

px(x) can be computed analytically when pz(z) = N (z|0, Im). We reuse u, Λ and logZx from above to get:

px(x) = exp{log Ẑz − logZx}, where (41)

log Ẑz =
1

2
(uT (Im + Λ)−1u− log |Im + Λ|+ dim(z) log(2π))

To embed an x in the latent space, we use the pseudo-inverse of x on the hyperplane, which is equal to:

z+ = Λ−1u (42)

This closed form solution yields a simple but powerful method to incorporate low-dimensional representations to normalizing
flows. The unit Gaussian prior that is used to train standard normalizing flows can be replaced with equation (41) in order to
gain give a normalizing flow the ability to learn a low-dimensional representation. We use this in our experiments to isolate
the effect of using low-dimensional latent states.

A.9. Derivation of closed form

We start by proving the identity:

∫
exp{−1

2
zTJz + zTh}dz = exp{1

2
hTJ−1h− 1

2
log |J |+ dim(z)

2
log(2π)︸ ︷︷ ︸

log Ẑz

} (43)

Proof: Consider a Gaussian probability density function: N (z|J−1h, J−1). Because probability density functions integrate
to 1, we have

∫
N (z|J−1h, J−1)dz = 1 (44)∫

exp{−1

2
(z − J−1h)TJ(z − J−1h)− 1

2
log |J−1| − dim(z)

2
log(2π)}dz = 1 (45)∫

exp{−1

2
zTJz + zTh− 1

2
hTJ−1h+

1

2
log |J | − dim(z)

2
log(2π)}dz = 1 (46)∫

exp{−1

2
zTJz + zTh}dz = exp{1

2
hTJ−1h− 1

2
log |J |+ dim(z)

2
log(2π)} (47)

Normalizing Flows Across Dimensions

With this identity, we can proceed with the main derivation:

px(x) =

∫
N (z|0, Im)N (x|Az + b,Σ)dz (48)

=

∫
exp{−1

2
zT z − dim(z)

2
log(2π)} (49)

exp{−1

2
(x−Az − b)TΣ−1(x−Az − b)− 1

2
log |Σ| − dim(x)

2
log(2π)}dz (50)

=

∫
exp{−1

2
zT z − 1

2
zT ATΣ−1A︸ ︷︷ ︸

Λ

z + zT ATΣ−1(x− b)︸ ︷︷ ︸
u

}dz (51)

exp{−1

2
(x− b)TΣ−1(x− b)− 1

2
log |Σ| − dim(x)

2
log(2π)︸ ︷︷ ︸

− logZx

−dim(z)

2
log(2π)} (52)

=

∫
exp{−1

2
zT (Im + Λ)z + zTu}dz exp{− logZx −

dim(z)

2
log(2π)} (53)

We use the identity from above to introduce log Ẑz

=

∫
exp{−1

2
zT (Im + Λ)z + zTu− log Ẑz}dz exp{log Ẑz − logZx} (54)

=

∫
N (z|(Im + Λ)−1u, (Im + Λ)−1)dz exp{log Ẑz − logZx} (55)

= exp{log Ẑz − logZx} (56)

Normalizing Flows Across Dimensions

x = f(v)

v ∼ N(v|Az + b,Σ) z ∼ N
Ä
z|Λ−1u,Λ−1

äv = f−1(x)

z

x

GLOW

Gaussian
NIF

Figure 4. NIF architecture used in experiments

s=0.000 s=0.143 s=0.286 s=0.429 s=0.571 s=0.714 s=0.857 s=1.000

Figure 5. Images from our model with the same latent state at varying distances from the manifold. (Latent state dimensionality is 128)

A.10. Experimental Setup

Our baseline normalizing flow uses a similar architecture to GLOW (Kingma & Dhariwal, 2018) with 16 steps of their flow
(Kingma & Dhariwal, 2018), each with 256 channels, and 5 multiscale components (Dinh et al., 2017). The NIF models
reused the baseline normalizing flow on top of a Gaussian NIF as shown in figure 4.

B. Additional Experiments
B.1. Effect of s

As discussed in section 5.2, the parameter s impacts how far samples from an NIF are from the learned manifold.
Figure 5 shows the effect of moving a sample away from the manifold by increasing s. We see that as the image lies
farther from the manifold, it exhibits more distortion that resembles the distortion seen in the NF samples. Visually it
may seem like deviating from the manifold randomly distorts an image, however we find that small deviations from
the manifold may add imperceptible features to the image. We fine evidence of this in how the FID varies with s.

0.0 0.2 0.4 0.6 0.8 1.0
s

30

40

50

60

70

FI
D

NF
NIF-64
NIF-128
NIF-256
NIF-512

Figure 6. FID with the CelebA dataset vs s. Small deviations
from the manifold provide significant improvements to FID.
(Latent state dimensionality is 128)

Fréchet Inception Distance (FID) (Heusel et al., 2017) is a
quantity used to measure the sample performance of a gener-
ative model. It computes a distance between two probability
distributions by comparing the distributions of the activations
of a state-of-the-art classifier for the Image-Net (Deng et al.,
2009) dataset on samples from each dataset. While FID has
been shown to correlate with visual quality, at its core it can
measure features that the classifier has learned. Fig. 6 shows
that for some non-zero value of s, the resulting NIF can yield
significantly better FID values. Given that non-zero values of
s do not correspond to clear visual changes in images, we can
interpret the result of Fig. 6 to mean that slight deviations from
the learned manifold correspond to noise in a feature space
that is perceptible to a classifier. By tuning s over a random
sub-sample of the training set and computing FID over a test
set, noisy injective flows are able to either match or significantly
outperform normalizing flows in FID, as shown in Tab. 1.

Normalizing Flows Across Dimensions

B.2. Fashion MNIST
NF

NI
F-

64
NI

F-
12

8
NI

F-
25

6
NI

F-
51

2

Figure 7. Samples from each model trained on Fashion MNIST. Top row is from the baseline normalizing flow and, from top to bottom,
the remaining rows are samples from a noisy injective flow with latent state dimensionalities of 64, 128, 256 and 512 respectively. We see
that even with small latent state dimensions, we are able to generate high

B.3. CelebA Reconstructions

64
12

8
25

6
51

2
Or

ig
in

al

Figure 8. Reconstructions of CelebA samples from the manifold (s = 0.0) of noisy injective flows with varying latent state sizes. The
rows, from top to bottom, use latent state sizes of 64, 128, 256 and 512. The last row is the original image from the dataset. We note that
standard normalizing flows are constructed to give perfect reconstructions, so we omit them from this plot.

Normalizing Flows Across Dimensions

(a) NF Samples. (b) NIF samples (s=0.0). (c) NIF samples (s=1.0).

Figure 9. Samples from an NIF on its manifold can look worse than the samples from an NF, but will look similar away from the manifold.

B.4. CIFAR-10 Results

0.0 0.2 0.4 0.6 0.8 1.0
s

100

150

200

250

300

FI
D

NF
NIF-64
NIF-128
NIF-256
NIF-512

Figure 10. FID vs s for the CIFAR-10 dataset. The NIF
models produce worse images than the NF close to
the manifold, but approach the quality of the NF as s
approaches 1.0.

Noisy injective flows have a difficult time learning datasets that likely
do not satisfy the manifold hypothesis such as CIFAR-10, however
noisy injective flows can revert to the generative performance of
normalizing flows by sampling off of the manifold. Figure 9(a) shows
samples from the baseline normalizing flow and noisy injective flow
(with latent dimension of 128) from the experiments section. The plot
in the middle shows, figure 9(b) samples from the manifold of the
NIF. The sample lack features of images that one expect to be present
in CIFAR images. However, when we sample from off the manifold
(s = 1.0) like in figure 9(c), noisy injective flows produce samples
that resemble those from the normalizing flow.The plot of FID vs s
in figure 10 provides a similar result. The FID score of the NIF is
poor when sampling on the manifold, but reverts back to that of the
baseline normalizing flow as s is increased to 1.

Normalizing Flows Across Dimensions

x = f(v)

u = g(z)

v ∼ p(v|u) u ∼ p(v|u)∫
p(v|u)du

v = f−1(x)

z = g−1(u)

z

x

Figure 11. General deep noisy injective flow architecture

B.5. Deep noisy injective flow

Here we show samples from a noisy injective flow whose architecture resembles figure 11. This model used a latent state
size of 128, used a low dimensional normalizing flow that consisted of 10 affine coupling layers, each with a 4 layer MLP
with 1024 units in each hidden layer, and act norm and reverse layers in between each affine coupling. A standard Gaussian
NIF from section 4 was used to change dimension into the same GLOW architecture described in the experiments section,
but with 512 channels in each convolutional filter.

The use of a low dimensional normalizing flow allows the model to learn a probability density over the manifold. Then the
high dimensional flow is able to shape the manifold to fit data. As a result, we see more variation in the images produced by
this kind of noisy injective flow, especially at higher temperatures.

Normalizing Flows Across Dimensions

Figure 12. Samples from manifold of deep NIF at t = 1.0

Normalizing Flows Across Dimensions

Figure 13. Samples from manifold of deep NIF at t = 2.0

Normalizing Flows Across Dimensions

Figure 14. Samples from manifold of deep NIF at t = 4.0

