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Abstract
While adversarial methods and flows have be-
come the primary methods for transforming be-
tween two distributions, both methods generally
perform global optimization via end-to-end back-
propagation, which requires large computational
resources, careful parameter tuning, and gradient-
based model components. Thus, we propose an
alternative novel meta-algorithm for iteratively
transforming between distributions by solving
a sequence of simpler layer-wise learning prob-
lems. In contrast to end-to-end optimization, each
layer-wise problem requires less computational
resources, has less hyperparameters, and can be
solved via optimization methods other than gra-
dient descent (e.g., tree-based algorithms). Our
meta-algorithm iteratively attempts to minimize
the mutual information between the distribution
indicator label and the latent representation—i.e.,
destroying (or deconstructing) the differences be-
tween distributions. We develop three classes
of weak algorithms for the inner optimization
of our meta-algorithm: (1) adversarial-based de-
structors, (2) density destructors, and (3) classi-
fier destructors—a novel class we introduce. We
leverage insights from a novel decomposition and
optimal transport to develop concrete classifier
destructors based on (pseudo-)generative mod-
els that deconstruct differences while preserving
shared structure as exemplified by the Wasserstein
barycenter distribution.

1. Introduction and Motivation
Transforming between two distributions is a fundamental
problem in machine learning with applications in generative
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models and domain translation (among others). Optimal
transport (OT) based on the Wasserstein distribution dis-
tance has recently become a more widely used tool in ML
for theoretically grounded distribution transformations (e.g.,
see (Peyré & Cuturi, 2019)). The Wasserstein barycenter
distribution is a more natural “average” distribution between
two (or more) distributions than an additive mixture distribu-
tion. However, estimating the OT invertible transformation
to its barycenter for continuous space is generally very chal-
lenging. Thus, in practice, adversarial methods have become
the workhorse for the problem of distribution transformation
(e.g., CycleGAN (Zhu et al., 2017)). But adversarial meth-
ods often lack exact invertibility or a shared latent space
and are known to be challenging and unstable in certain
situations. As an alternative to adversarial optimization,
normalizing flows (i.e., invertible generative models) can
produce exact invertibility by construction and more stable
training (Germain et al., 2015; Dinh et al., 2015; Graves,
2016; Dinh et al., 2017; Papamakarios et al., 2017; Inouye
& Ravikumar, 2018). Other recent work has even combined
adversarial objectives and invertible models to create a hy-
brid approach between adversarial and flow-based methods
(Grover et al., 2020). Yet, both adversarial and flow-based
methods usually apply end-to-end backpropagation of large
deep models to optimize a global objective function. This
end-to-end optimization requires large computational re-
sources, careful parameter tuning, and gradient-based model
components. Additionally, the optimization requires back-
ward synchronization between layers—thereby preventing
simple pipelining across multiple processors or devices.

Thus, we seek a fundamental alternative to end-to-end back-
propagation for transforming between two distributions. We
propose a destructive meta-algorithm that seeks to mini-
mize the mutual information (i.e., destroying information)
between the latent representation and the domain label by
solving a sequence of simpler layer-wise optimization prob-
lems, i.e., weak algorithms. In contrast to end-to-end op-
timization, each layer-wise problem requires less compu-
tational resources, has less hyperparameters, and can be
solved via optimization methods other than gradient descent
(e.g., tree-based algorithms). Our key contributions can be
summarized as follows:

• We propose a destructive meta-algorithm for iteratively



WeakFlow: Iterative Invertible Distribution Transformations

transforming between two distributions by minimizing
mutual information (i.e., removing the differences be-
tween distributions).

• We present three classes of weak algorithms for the inner
optimization of our meta-algorithm: (1) density destruc-
tors, (2) adversarial-based destructors, and (3) classifier
destructors—a novel class we introduce.

• We propose a novel classifier destructors weak algorithm
that maps classifiers to invertible transformation by solv-
ing local Wasserstein barycenter problems that seek to
remove the differences but maintain the similarities be-
tween distributions.

• We prove a novel decomposition of mutual information
to motivate our classifier destructors algorithm.

• We develop concrete instantiations of our classifier de-
structors algorithm by leveraging classical classifiers in-
cluding naı̈ve Bayes, Gaussian Bayes, single index mod-
els, and decision tree classifiers.

Notation T or t will denote strong (i.e., deep) or weak
invertible transformations respectively. Similarly, D or d
will denote strong or weak density destructors (Inouye &
Ravikumar, 2018) (described in related work below). We
will denote the distribution indicator random variable as
Y ∈ {1, 2} and the corresponding data random variables as
X1 and X2 respectively. The symbol ◦ will denote function
composition, e.g., f ◦ g = f(g(·)).

Related Work The closest work to our is the iterative
Gaussianization methods for learning density models (Tabak
& Vanden-Eijnden, 2010; Tabak & Turner, 2013; Chen &
Gopinath, 2000; Lin et al., 2000; Lyu & Simoncelli, 2009;
Laparra et al., 2011; Ballé et al., 2016), which all lever-
age an iterative procedurer by solving a sequence of sim-
pler problems. Density destructors (Inouye & Ravikumar,
2018) are similar in concept to Gaussianization. Inouye &
Ravikumar (2018) define a density destructor as an invert-
ible function that transforms a given density to the uniform
density (the assumed latent distribution). Given this, In-
ouye & Ravikumar (2018) provide a meta-algorithm for
building up deep density models by iteratively solving weak
density estimation problems (e.g., Gaussian mixture, in-
dependent component densities, tree densities) and then
mapping these densities to density destructors. Because
the latent distribution is assumed to be uniform instead of
Gaussian (as in most normalizing flow models), the total log
likelihood is simply the sum of log likelihoods of all layers,
i.e., logPX(x) = logPZ(D(x))|JD(x)| = log |JD(x)| =∑k
`=1 log |Jd(`)(x(`))|, where D = d(k)(· · · d(1)(x)) is

a deep density destructor with weak density destructors
d(`), x(`) = d(`−1)(· · · d(1)(x)) and |JD(x)| denotes Ja-
cobian determinant of the invertible transformation D.
Thus invertible function estimation can be simplified into
two steps: 1) standard density estimation (e.g., P̂ =

arg min P MLE(P,X ) where X is a set of data samples)
and 2) mapping of the estimated density to a corresponding
density destructor, i.e., D̂ , DensDestructor(P̂ ) such that
|JD̂(x)| = P̂ (x) where DensDestructor is a deterministic
mapping from the density parameters to an invertible trans-
formation. (Inouye & Ravikumar, 2018) generalize previous
density destructor mappings from the iterative Gaussianiza-
tion literature as well as introduce novel ones including the
tree density destructors. This weak algorithm can be applied
multiple times using the output of the previous transforma-
tion as the input to the next iteration to create a deep density
destructors (Inouye & Ravikumar, 2018). While we are
inspired by iterative Gaussianization and density destruc-
tors, our task is fundamentally more challenging because
we seek to transform between any two arbitrary distribu-
tions while iterative Gaussianization assumes that one of the
distributions is Gaussian.

2. WeakFlow: Iterative Destructive Learning
Objective: Minimize mutual information in latent space
The overall destructive learning objective is to minimize the
mutual information between the indicator random variable
Y and the latent random variable Z (which could be depen-
dent on Y ):

min
T1,T2

I(Z, Y ), where Z ,

{
T1(X1), if Y = 1
T2(X2), if Y = 2

.

Intuitively, this means we seek to destroy any information
that the random variable Z contains about Y and vice versa.
When mutual information is zero, then the two random
variables are independent—which corresponds to the two
distributions PZ1

and PZ2
aligning perfectly, i.e., PZ1

=
PZ2 = PZ .

Equivalence to adversarial objective We derive the min-
max adversarial objective using simple known identities
between mutual information, Jensen-Shannon divergence,
and adversarial learning: I(Z, Y ) = JSD(PZ1

, PZ2
) =

1
2 maxf EZ1 [log f(z)] + EZ2 [log(1− f(z))] , where
f : Z → [0, 1] is an arbitrary function with output between
0 and 1. Thus, a new min-max adversarial optimization
problem can be formulated as follows:

min
T1,T2

max
f

EZ1 [log f(z)] + EZ2 [log(1− f(z))]︸ ︷︷ ︸
Negative classification CE loss in latent space

, (1)

where Z1 =T1(X1), Z2 =T2(X2) . However, this adversar-
ial optimization has two fundamental issues. First, for the
equivalence with JSD, the function f must have arbitrary
complexity and the expectations must be at the population
level rather than empirical expectations—this is a particular
issue for our setup in which we want to solve simple local
problems. Second, adversarial optimization is known to be
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unstable in many cases. Thus, we propose a novel different
decomposition which inspires the novel classifier destruc-
tors algorithm described later (proofs in the appendix).
Theorem 1 (Observed Space Decomposition). If
T1, T2 : Xm → [0, 1]m are invertible transformations
and we define the following auxiliary function g as:
g(x;T1, T2) ,

|JT1
(x)|

|JT1
(x)|+|JT2

(x)| , we can decompose the
mutual information in the latent space as follows:

I(Z, Y ) = JSD(PX1 , PX2)︸ ︷︷ ︸
Constant w.r.t. T1 and T2

+ 1
2 (EX1 [−log g(x;T1, T2)]+EX2 [− log(1−g(x;T1, T2))])︸ ︷︷ ︸

Classification CE loss in observed space

+ KL( 1
2 (PX1

+ PX2
), 1

2 (|JT1
|+ |JT2

|))︸ ︷︷ ︸
Observed mixture vs Jacobian mixture

+H( 1
2 (PZ1

+ PZ2
))︸ ︷︷ ︸

Entropy of latent mixture

− log 2 . (2)

Remark 1 (Classification loss in observed space). While
this decomposition also reveals a classification problem
(as in the adversarial decomposition), it is critical that the
classification loss in Theorem 1 is in the observed space, i.e.,
in the space of X1 and X2—in contrast to the adversarial
loss of Eqn. 1 which is in the latent space Z1 and Z2. This
observation will be our primary inspiration for our classifier
destructors weak algorithm. While our approach does not
explicitly account for the other terms (i.e., the KL term and
entropy term), we find empirically that our method does
decrease the mutual information.

Meta-algorithm: Iterative and destructive composi-
tional learning We now present our iterative meta-
algorithm in Alg. 1 for minimizing the mutual information
of the transformed representation by iteratively composing
simple invertible transformations. The weak algorithm pro-
ceeds in a forward-only manner; thus, during training, we
only require storing the current representation in memory.
Also, this meta-algorithm is amenable to online learning
and pipelined learning because of its forward-only manner.

Algorithm 1 Iterative Compositional Meta-Algorithm

Input: Samples from PX1
and PX2

denoted as X1 and X2,
number of iterations/layers M

Output: Invertible transformations T1, T2

Z(0)
1 ← X1, Z(0)

2 ← X2

for ` = {1, 2, . . . ,M} do
t
(`)
1 , t

(`)
2 ← WeakAlgorithm(Z(`−1)

1 ,Z(`−1)
2 )

Z(`)
1 ← t

(`)
1 (Z(`−1)

1 ), Z(`)
2 ← t

(`)
2 (Z(`−1)

2 )

T
(`)
1 ← t

(`)
1 ◦ T

(`−1)
1 , T

(`)
2 ← t

(`)
2 ◦ T

(`−1)
2

end for
return T

(M)
1 , T

(M)
2

3. Weak Algorithms
Adversarial Weak Algorithm Given the equiva-
lence of minimizing mutual information to an ad-
versarial objective, we could merely solve small
adversarial optimization problems for invertible trans-
formations: arg min t1,t2 maxf (Êt1(X1) [log f(z)] +

Êt2(X2) [log(1− f(z))]). However, we do not pursue this
further because of the instability of adversarial optimization.

Density Destructors Weak Algorithm (Inouye &
Ravikumar, 2018) The simplest non-adversarial al-
gorithm that we will use as a baseline is merely
to estimate density destructors (Inouye & Ravikumar,
2018) for each distribution independently: ∀y ∈
{1, 2}, P̂Xy ← arg minQ MLE(Q;Xy), ty ≡ dy ←
DensDestructor(P̂Xy ), where X1 and X2 are samples from
PX1 and PX2 respectively. Given a flexible enough den-
sity destructor (or normalizing flow), both distributions will
converge to the uniform distribution—and thus the mutual
information will be zero, i.e., lim`→∞ I(Z(`), Y ) = 0.

Classifier Destructors Weak Algorithm Finally, we pro-
pose a novel classifier destructor algorithm inspired by the
observed classification loss in Theorem 1. We focus on min-
imizing the second term of Theorem 1 because that can be
framed as a standard classification problem in the observed
space, i.e., we won’t have to do adversarial learning. Our
general approach will be to map the classifier to a simple
(pseudo-)generative classifier with (pseudo-)densities Q1

and Q2, and then use the machinery of density destructors
(Inouye & Ravikumar, 2018) to map these densities to invert-
ible transformations. Additionally, unlike in density destruc-
tors that move the distribution to a high entropy distribution,
we seek to maintain the shared structure between distribu-
tions. Thus, we consider using local Wasserstein barycenter
projections in our algorithms to preserve as much structure
as possible while hoping to make the distributions overlap.
(We review a few well-known results about Wasserstein
barycenters in the appendix.) We define several properties
in the appendix about classifier destructors but jump to our
concrete instantations for this extended abstract:

Proposition 2 (Naı̈ve Bayes Classifier Destructors). Given
a naı̈ve Bayes classifier with PY (1) = PY (2) = 1

2 :

f(x) =
∏m
i=1 P̂X1,i

(xi)∏m
i=1 P̂X1,i

(xi)+
∏m
i=1 P̂X2,i

(xi)
, the fol-

lowing feature-wise composite transformations
are Wasserstein classifier destructors: ty(x) =
[d−1

bary,1(dy,1(x1)), d−1
bary,2(dy,2(x2)), · · · , d−1

bary,m(dy,m(xm))] ,

where dy,i = DensDestructor(P̂Xy,i), d−1
bary,i =

DensDestructor(bary(P̂X1,i
, P̂X2,i

)), and bary(·, ·) denotes
the Wasserstein barycenter distribution.

Proposition 3 (Gaussian Bayes Classifier Destruc-
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tors). Given a Gaussian Bayes classifier: f(x) =
PN(µ1,Σ1)(x)

PN(µ1,Σ1)(x)+PN(µ2,Σ2)(x) , the following composite trans-
formations are Wasserstein classifier destructors: ty =

d−1
bary ◦ dy , where dy(x) , Φ(Ay(x−µy)) and dbary(x) ,

Φ(Σ
−1/2
bary (x− µbary)) are density destructors for PN (µy,Σy)

and PN (µbary,Σbary) respectively, and Ay , Σ
−1/2
bary

1
2 (I +By)

where By , Σ
−1/2
y (Σ

1/2
y ΣỹΣ

1/2
y )1/2Σ

−1/2
y is the projec-

tion matrix for the optimal Monge map between the two
class distributions (if y = 1, then ỹ = 2 or vice versa).

Leveraging discriminative classifiers to find structure
Now we consider how we can leverage discriminative classi-
fiers to create pseudo-generative classifiers that focus more
on the differences between distributions. First, we extend
naı̈ve Bayes classifier destructors by finding an orthogonal
pre-transformation that exposes the linear directions that
have high mutual information (i.e., directions that will give
good classification)—one special case is a random orthogo-
nal pre-transformation. Specifically, we designed a method
that optimizes k single index models along k orthogonal
directions simultaneously, where a single index model (SI)
is a model that only operates along one direction (i.e., a
single index): fSI(x) , g(βTx) where β is a vector and
g : R 7→ R is a arbitrary scalar function (e.g., a deep net-
work). Thus, jointly estimating k SI models can be seen as
estimating a single index ensemble (SIE) (more details in
appendix). The learned orthogonal transformation is then
used for pre and post processing transformations around
naı̈ve Bayes classifier destructors to significantly increase
the modeling power, denoted as SIE NB in the preliminary
experiments. As another example, we can leverage decision
tree classifiers fS,L(xi) (where S is the tree split structure
and L are the classifier probabilities at the leaves) to expose
discriminative structure. We can use tree density destructors
developed in (Inouye & Ravikumar, 2018) to create a novel
tree-based approach, which is impossible with gradient-
based optimization methods as used in standard end-to-end
learning (more details in appendix).

4. Experiments
Simulated Experiments We first begin with some simu-
lated experiments to develop some intuition about classifier
destructors and to compare to density destructors (experi-
mental details in appendix). The progression through vari-
ous stages can be seen in Fig. 1 for the moons dataset. To
estimate the decrease in mutual information, we fit Gaussian
process classifiers with default parameters from scikit-learn
for these datasets (using separate train and test datasets) and
take the test accuracy as a proxy for mutual information.
Additionally, we measure the distance of the transformed
representation from its original representation and compare

Figure 1: Our proposed method SIE NB aligns the distri-
butions, denoted by color, in only two layers while density
destructors (in appendix) takes seven or more layers to align
the distributions (superscripts denote layer number and “pre”
and “post” are optional pre and post processing transforms
while “mid” is the core transformation). Additionally, SIE
NB preserves some of the original structure (e.g., the final
latent distribution has a curved shape as in the original).

Figure 2: (Left) Preliminary simulated experiments demon-
strate that our proposed method (SIE NB) aligns the two dis-
tributions (as measured by test accuracy where lower means
better aligned) with far fewer layers than the two baselines
of density destructors or NB with only random rotations.
(Right) Additionally, our proposed method (SIE NB) mini-
mally distorts the original distributions (as measured by the
average distance before and after the transformation where
lower is better) as evident by the distance approaching the
optimal—i.e., minimal—transport (OT) distance (dashed
line); however, density destructors significantly distort the
distributions more than necessary. More results in appendix.

to the optimal empirical Barycenter mapping—this helps
quantify if the structure is preserved. The empirical opti-
mal transport distance to the barycenter is also shown as a
dashed line—demonstrating that our classifier destructors
can sometimes achieve close to the optimal barycenter trans-
formation. MI proxy and distance can be seen in Fig. 2.
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Figure 3: Latent representations after applying various classifier destructors. DD10 is for density destructors with 10 layers.
SIENB10 is SIE naı̈ve Bayes with 10 layers. Additional results in appendix.

High-dimensional Experiment To show the feasibility
of using our proposed algorithms on high dimensional data,
we explore the case of transforming between the 0s and
1s digits on the permuted MNIST dataset (i.e., we do not
consider pixel dependencies, other experimental details in
appendix). The results in Fig. 3 show that our core classifier
destructors are able to move the 0 and 1 MNIST distributions
much closer to each other than the original space while
maintaining reasonable image structure such as the shared
black pixels. To measure a proxy for mutual information,
we again train a classifier (a simple deep CNN) to see if
the images are getting harder to distinguish. The accuracies
using a deep CNN classifier when transforming between 0
and 1 and vice versa from top to bottom are 1.000 (Original),
1.000 (DD10), and 0.988 (SIENB10) respectively—showing
that our classifier destructors begin to degrade the accuracy
(a proxy for mutual information) even on this very simple
classification problem.
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A. Introduction to Previously Known Results about Wasserstein Barycenters
We briefly introduce a few known results about Wasserstein barycenters that will be critical for our development. While
solving for barycenter distributions or optimal transportation maps (also known as Monge maps), there are several simple
cases that are known in closed-form (particularly 1D distributions and multivariate Gaussian distributions. The optimal
transport map for continuous distributions from a distribution denoted by α to β is known as the Monge map, which we will
denote byM∗α→β . For 1D distributions, the optimal Monge map is merely a composition of CDF functions: M∗α→β = F−1

β ◦
Fα, where Fα and Fβ are the univariate CDF functions of α and β respectively. The optimal Monge map from one Gaussian
N (µ1,Σ1) to another Gaussian N (µ2,Σ2) is (Peyré & Cuturi, 2019)[Remark 2.31]: M∗1→2(x) = A(x− µ1) + µ2 where
A = Σ

1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 . Additionally, the optimal interpolation between distributions indexed by λ ∈ [0, 1]

is given by the McCann’s interpolation (Peyré & Cuturi, 2019)[Remark 7.1]: M∗λ(x) = (1 − λ)x + λD1→2(x), where
λ = 0.5 corresponds to the mapping to the barycenter distribution. Thus, by combining these two facts, we can derive the
optimal transformation from each distribution to the barycenter distribution in the case of 1D distributions or multivariate
Gaussian distributions. Additionally, we note that the barycenter of two Gaussian distributions has a mean and covariance as
follows (Chen et al., 2019, p. 6271): µbary = 1

2 (µ2 + µ1), Σbary = Σ
−1/2
1 ( 1

2 (Σ1 + (Σ
1/2
1 Σ2Σ

1/2
1 )1/2))2Σ

−1/2
1 .

B. Definitions and Properties of Classifier Destructors
We now define several properties of a pair of transformations (t1, t2) corresponding to the two distributions.
Definition 1 (Classifier Consistency Property). Given a classifier f , a pair of transformations (t1, t2) is said to be consistent
with f , if ∀x, g(x; t1, t2) = f(x), where g(x; t1, t2) is defined as in Theorem 1.
Definition 2 (Wasserstein Barycenter Mapping Property). Given a (pseudo-)generative classifier f with class distributions
Q1 and Q2, the transformations t1 and t2 are equivalent to the optimal Monge maps between the corresponding class
conditional distribution and the Wasserstein barycenter distribution, i.e., t1 = M∗Q1→bary and t2 = M∗Q2→bary.

Classifier consistency will ensure that the observed classification error term in Eqn. 2 is reduced at every iteration (formal
statement given later in Cor. 4). Wasserstein barycenter mapping property will help ensure that similar structure is
maintained. Given these definitions, we can now define our primary objects called classifier destructors and an extension
called Wasserstein classifier destructors.
Definition 3 (Classifier Destructors). Given a probabilistic classifier f , classifier destructors are a pair of composite
invertible transformations (t1, t2) defined as: t1 , tpost ◦ tmid,1 ◦ tpre and t2 , tpost ◦ tmid,2 ◦ tpre , where tpre and tpost

are shared pre and post processing transformations, such that classifier consistency (Def. 1) holds for the transformations
(tmid,1, tmid,2) and the classifier f̃ = f ◦ tpre (equivalent classifier after preprocessing transformation).
Definition 4 (Wasserstein Classifier Destructors). Given a (pseudo-)generative classifier f , Wasserstein classifier destructors
are classifier destructors (t1, t2) such that the Wasserstein barycenter mapping property (Def. 2) also holds for (t1, t2).

We prove in Cor. 4 that if our classifier is better than random, then the corresponding classifier destructors reduce the
classification loss term in Theorem 1. Note that this does not necessarily mean that the mutual information is decreased at
every iteration as there are other terms we do not explicitly control for; however, our empirical results suggest that focusing
only on this term can still be useful and does not require unstable adversarial optimization. Now we present two concrete
instatiations of Wasserstein classifier destructors.

C. Leveraging Single Index Ensembles
In the previous case, we had generative models directly and the key difference from density destructors is the Wasserstein
barycenter mapping property. Now we consider how we can leverage discriminative classifiers to create pseudo-generative
classifiers that focus more on the differences between distributions—the parts that will reduce classification loss—rather
than the similarities. These auxiliary classifiers will only be used to find important structure but can be discarded after
training (similar to how discriminative networks in GANs are no longer needed after training). First, we would like to
extend naı̈ve Bayes classifier destructors by performing an orthogonal pre-transformation that exposes the dimensions that
have high mutual information (i.e., directions that will give good classification). As a first simple idea, we propose to find a
single direction that is most interesting using single index classifier models f(x) = h(βTx), where h can be an arbitrarily
complex univariate function bounded between 0 and 1, and β is the projection direction. We can map this single direction to
a an orthogonal transformation via Householder reflectors. In general, a single direction may not provide much information
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in high dimensions, so we also consider a single index ensemble (SIE) approach to learn multiple single index classifiers
in parallel: WSIE = arg minW minh1...hk

∑k
j=1

∑n
i=1 L(hj([Wxi]j), yi), where k ≤ m is the number of single index

models to learn, W is an orthogonal matrix (parameterized via k Householder reflectors in our experimetns), and L is the
cross entropy loss. Thus, combining this with naı̈ve Bayes classifiers destructors as pre and post transformations we have
that tpre(x) = WSIEx, tmid,1, tmid,2 = NaiveBayesClassifierDestructors(Q1, Q2), and tpost = W−1

SIEx, where Q1 and Q2 are
the independent conditional distributions after the pretransformation. An idea for tree destructors is in the appendix.

D. Leveraging Decision Tree Classifiers
We also propose to leverage decision tree classifiers fS,L(xi), where S is the tree split structure and L are the classifier
probabilities at the leaves, to expose discriminative structure. Then, we can estimate tree density destructors from (Inouye &
Ravikumar, 2018) for each class distribution given the tree split structure S (we ignore the L probabilities similar to how we
ignore hj of the SIE model). Given the structure S, this is simply leaf node bin counting to estimate a tree densities. Finally,
we can solve local 1D Wasserstein barycenter problems starting from the leaves and bubbling upward (note that at each
split, it is like solving a 1D histogram barycenter problem with only two bins in each histogram). We emphasize that our
meta-algorithm does not require gradient-based weak algorithms and so we are free to use trees.

E. Experimental Details
Since we will be using classifier accuracy on the transformed data as a proxy for mutual information (MI) between the
representations, we will need both train and test splits for this classifier. We will call this classifier used for evaluation the
“MI Classifier”. Thus, for both experiments, we will split the data into three disjoint splits because we need separate data for
evaluation.

1. Train (Dtrain = {xi, yi}ntrain
i=1 ) - This first split is the training data used for our meta-algorithm to learn the transformation

between domains.
2. MI Train (DMI train = {xi, yi}nMI train

i=1 ) - This second split is the data used to train our MI classifier model whose test
accuracy will be a proxy for mutual information.

3. MI Test (DMI test = {xi, yi}nMI test
i=1 ) - This last split is the data used to test our classifier model whose test accuracy will

be a proxy for mutual information.

E.1. Simulated Experiment

We first begin with some simulated experiments to develop some intuition about classifier destructors and to compare
to density destructors. We generate the simple moons and classification datasets via scikit-learn. We apply the density
destructor weak algorithm using random rotations followed by independent density destructors. We then apply our SIE
naı̈ve Bayes weak algorithm (SIENB) to the same dataset. The progression through various stages can be seen in Fig. 1 for
the moons dataset. SIENB makes the the distributions overlap quickly (with only 3 full transformations) while maintaining
some structural properties and the correspondence of points (denoted by dark vs light across x-axis). Density destructors
weak algorithm (right) do not maintain the original structure of the data including correspondence between points. Random
rotation naı̈ve Bayes (shown in the appendix) maintains some of the correspondence but does not perform as well. To
estimate the decrease in mutual information, we fit Gaussian process classifiers with default parameters from scikit-learn
for these datasets (using separate train and test datasets) and take the test accuracy as a proxy for mutual information.
Additionally, we measure the distance of the transformed representation from its original representation and compare to the
optimal empirical Barycenter mapping—this helps quantify if the structure is preserved. In Fig. 2, we can see that SIE naı̈ve
Bayes weak algorithm on the moons (left) and simple classification (middle left) datasets quickly reduces classifier test
accuracy on latent representation (a proxy for mutual information) while random naı̈ve Bayes and density destructors are
much slower. Both SIE naı̈ve Bayes and random rotation naı̈ve Bayes on the moons (middle right) and blobs (right) only
minimally move the data points from their original location while density destructors ignores the original structure or point
correspondence. The empirical optimal transport distance to the barycenter is also shown as a dashed line—demonstrating
that our classifier destructors can sometimes achieve close to the optimal barycenter transformation. Note that the test
classifier used as a proxy for mutual information is trained independently for every latent representation.

Datasets and Setup We generate 3000 2D samples the moons dataset, the circles dataset, and the classification dataset via
the sklearn functions make moons, make circles and make classification. We split this into our three subsets
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above so that ntrain = nMI train = nMI test = 1000. For our MI classifier, we first normalize the data to have zero mean and
unit variance and then fit a Gaussian process classifier from sklearn with default parameters using the MI train dataset
DMI train. We estimate test accuracy using the held-out MI test dataset DMI test. We compute the average Euclidean distance
between the original data and the data in the latent representation space based on DMI train. The OT distance is computed
numerically as half distance between the optimal transport between samples of X1 and X2 in DMI train. Since the number of
samples is not always equal because of randomness, we take the minimum number of samples between y = 1 and y = 2
so that the empirical OT is an exact matching between samples. Thus, after matching, this merely the distance between
samples divided by two (since we project to the barycenter).

Density destructors For the density destructors model, we first apply an independent Gaussian density destructor as an
initial destructor to quickly normalize the data with respect to the mean and variance along each dimension. Then, we
applied a Gaussian-copula density destructor, which has the form

tmid,y = Fhist,y ◦ Φ ◦Wy ◦ Φ−1 , (3)

where Φ and Φ−1 are the element-wise standard normal CDF and inverse CDF, Wy is a random orthogonal matrix, and
Fhist,y is a histogram CDF estimated with 100 bins, bounds of 0 to 1, and an regularization parameter α = 1 (which are like
the pseudo-counts in each bin). This was primarily inspired by the structure of density destructors used in the examples in
(Inouye & Ravikumar, 2018).

Naı̈ve Bayes classifier destructors Our naı̈ve Bayes classifier destructors estimate the density of each feature using a
very simple density destructor:

dnaı̈ve,i(x) = Fhist(Φ(
x− µ
σ

)) , (4)

where Φ(x−µ
σ ) is the density destructor of a normal distribution with mean µ and standard deviation σ, and Fhist is a

histogram CDF estimated with b√ntrainc bins (a simple heuristic), bounds from 0 to 1, and an α = 10−6 (regularization
based on pseudo-counts). The Gaussian preprocessing step projects the data from R to [0, 1], which is much more amenable
to non-parametric histogram density estimation since the data is now bounded—thereby avoiding the need to estimate the
support of the histogram. To compute the barycenter projection, we numerically estimate the projection in 1D using 100
grid points via McCann’s interpolation and the closed-form solution to 1D optimal transport based on the CDFs of the two
densities.

Random rotation naı̈ve Bayes For random rotation naı̈ve Bayes, we first applied a naı̈ve Bayes destructor defined as
above. Then, for every future layer, we apply in sequence: a random orthogonal transformation W , a naı̈ve Bayes classifier
destructor as defined above, and then the inverse of the pre-rotation W−1 = WT .

SIE naı̈ve Bayes For SIE naı̈ve Bayes, we do the same thing as random rotation naı̈ve Bayes except we learn the rotation
using a SIE model. For the SIE model, we parameterize the orthogonal matrix W by k = m Householder reflectors (while
one Householder reflector would be enough here, in the high-dimensional experiments we will choose k < m). Then, for
each single index model, we use a deep fully connected model with 2 hidden layers of width 100 and leaky relu activation
(using default parameters in PyTorch) with a sigmoid activation at the output. Thus, the input is one dimension, followed by
two 100 dimensional hidden layers and then ending with a single dimensional output. We use cross entropy loss and the
Adam optimizer with default parameters in PyTorch. We train the SIE model with a batch size of 500 and for 1000 batches
(or steps).

Expanded figures Expanded figures for all datasets can be found in the following figures.
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Figure 4: Progression of SIE naı̈ve Bayes (top left), density destructors (top right), and random rotation naı̈ve Bayes
(bottom).
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Figure 5: Mutual information at different layers (top) and distance from original representation (bottom). Moons (left),
classification (middle) and circles (right).
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E.2. High-dimensional Experiment (MNIST)

To show the feasibility of using our proposed algorithms on high dimensional data, we explore the case of transforming
between the 0s and 1s digits on the permuted MNIST dataset (i.e., we do not consider image-based dependencies in our
methods but merely use MNIST as an example of more general high dimensional problems). We compare a single naı̈ve
Bayes classifier destructor (NB), a single Gaussian Bayes classifier destructor (GB), and an deep SIENB(L) classifier
destructor with L layers and k = 100 single index models per SIE after applying GB and NB pretransformations. The
results in Fig. 3 show that our core classifier destructors are able to move the 0 and 1 MNIST distributions much closer to
each other than the original space while maintaining reasonable image structure such as the shared black pixels. To measure
a proxy for mutual information we again train a classifier (a simple deep CNN) to see if the images are getting harder to
distinguish. The accuracies using a deep CNN classifier for these representations from top to bottom are 1.000, 1.000, 0.986,
0.910, and 0.870 respectively—showing that our classifier destructors begin to degrade the discriminator accuracy (a proxy
for mutual information) even on this simple classification problem. Additionally, because simple NB does not degrade the
accuracy, it seems that the dependencies between pixels is key in the classification task as expected.

Datasets and Setup We took the 0 and 1 digits from the MNIST dataset (m = 784). As preprocessing, we added uniform
noise of size to convert from discrete to continuous data, i.e.,

x′ = x+ ε/256 (5)

where ε ∼ Uniform([0, 1]). We then split this into our three subsets above so that ntrain = 6890, nMI train = 6890, and
nMI test = 1000. For our MI classifier, a deep CNN classifier defined in PyTorch as follows:

nn.Sequential(
# input is (nc) x 28 x 28
nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf) x 14 x 14
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*2) x 7 x 7
nn.Conv2d(ndf * 2, ndf * 4, 3, 1, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*4) x 7 x 7
nn.Conv2d(ndf * 4, 1, 7, 1, 0, bias=False),
nn.Sigmoid()
# state size. 1 x 1 x 1 (use .view(-1) to get result as single array)

)

Additionally we initialize the convolutional weights with a zero mean Gaussian with 0.02 standard deviation and the
batchnorm layers were initialized with a mean of 1 and a standard deviation of 0.02. These choices were based on adapting
the DCGAN PyTorch tutorial at https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.
html, accessed in June 2020. We estimate test accuracy using the held-out MI test dataset DMI test. Because we use a
convolutional classifier, we perform two ways of comparing methods using accuracy of this MI classifier as a proxy.

1. 0 vs 1 in latent space: This is training and testing the classifier after projecting the MI training and testing datasets
into the latent space—i.e., after projecting, these samples should be close. The primary issue with this is that for
comparing to density destructors (which do not preserve latent structure), the convolutional image-basic structure no
longer exists—thus, a CNN is unlikely to do well since the latent space no longer looks like real images.

2. Average of real vs fake: For a more fair comparison to density destructors, we train the CNN classifier to distinguish
between the original 0s (or 1s) and 1s that have been projected to the 0s domain by first projecting to the shared
latent space via t1 and then inverse transforming to the 0’s space via t−1

2 . This essentially creates “fake” 0s (or
“fake” 1s). Note that the mutual information is the same in the latent space as it is in the 0’s space (or the 1’s space)
so this is a valid equivalent comparison, i.e., I(Z, Y ) = I(X ′, Y ) where X ′ = t−1

1 (Z) so that if Y = 1, then

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
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X ′ = t−1
1 (Z) = t−1

1 (t1(X)) = X but if Y = 2, then X ′ = t−1
1 (Z) = t−1

1 (t2(X)). This metric is more comparable
for all methods including density destructors that do not preserve any image-like structure in the latent space.

We compute the average Euclidean distance between the original data and the data in the latent representation space based
on DMI train.

Density destructors For our density destructors, we follow the basic structure from the MNIST example given for
density destructors in the official density destructors GitHub repository: https://github.com/davidinouye/
destructive-deep-learning/blob/master/notebooks/demo_mnist_deep_copula.ipynb. Fol-
lowing this, we have apply an initial histogram density destructor with 256 bins and bounds of 0 and 1 with an α = 1. We
then use a Gaussian copula destructor for each layer afterwards that has the following form:

ty = Φ ◦ ΩZCA ◦ Φ−1 ◦ Fhist (6)

where ΩZCA is a ZCA whitening transformation, the histogram used to fit Fhist has 40 bins, bounds of 0 and 1 and an α = 1,
and Φ and Φ−1 are defined as before. Each of these are estimated sequentially via density destructors.

Naı̈ve Bayes classifier destructors We use the same settings as in the simulated experiment.

SIE Naı̈ve Bayes classifier destructors We use the same setup as in the simulated experiment except that we set the
number of single index classifiers to k = 100.

Expanded figures Expanded and additional result figures can be seen in the following figures.

https://github.com/davidinouye/destructive-deep-learning/blob/master/notebooks/demo_mnist_deep_copula.ipynb
https://github.com/davidinouye/destructive-deep-learning/blob/master/notebooks/demo_mnist_deep_copula.ipynb
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Figure 6: Latent representations after applying various transformations. Notice that density destructors (DD) do not maintain
shared image structure since they seek to push the representation toward the uniform distribution everywhere. DD stands
for density destructors weak algorithm. DD0 is the initial transformation and DD10 and DD20 are after 10 or 20 layers
after the initial transformation. NB stands for naı̈ve Bayes classifier destructors. GB stands for Gaussian Bayes classifier
destructors. SIENB10 and SIENB20 are SIE naı̈ve Bayes classifier destructors after 10 and 20 layers respectively (with an
initial transformation of GB followed by NB).
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Figure 7: Original images at the top followed by flipped transformations (denoted by inverse −1) for various algorithms, i.e.,
where 0s are transformed to 1s and vice versa (same labels as in Fig. 6).
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F. Proofs
Theorem 1 (Observed Space Decomposition). If T1, T2 : Xm → [0, 1]m are invertible transformations and we define the
following auxiliary function g as: g(x;T1, T2) ,

|JT1
(x)|

|JT1
(x)|+|JT2

(x)| , we can decompose the mutual information in the latent
space as follows:

I(Z, Y ) = JSD(PX1 , PX2)︸ ︷︷ ︸
Constant w.r.t. T1 and T2

+ 1
2 (EX1

[−log g(x;T1, T2)]+EX2
[− log(1−g(x;T1, T2))])︸ ︷︷ ︸

Classification CE loss in observed space

+ KL( 1
2 (PX1

+ PX2
), 1

2 (|JT1
|+ |JT2

|))︸ ︷︷ ︸
Observed mixture vs Jacobian mixture

+H( 1
2 (PZ1 + PZ2))︸ ︷︷ ︸

Entropy of latent mixture

− log 2 . (2)

Proof of Theorem 1. First, we note the following:

I(Z, Y ) = JSD(PZ1
, PZ2

) (7)

= 1
2 (KL(PZ1

, PZ) + KL(PZ2
, PZ)) , (8)

where PZ = 1
2 (PZ1

+PZ2
) is the mixture distribution of PZ1

and PZ2
(or the distribution after marginalizing over Y )—PX

is defined similarly. The first equality is a well-known equality between mutual information and JSD. The second is just the
definition of JSD. Now each of the KL terms can be expanded in terms of Xy and ty:

KL(PZy , PZ)

= EZy
[
log

PZy (z)

PZ(z)

]
= EZy [logPZy (z)] + EZy [− logPZ(z)]

= EXy [logPXy (x)|Jty (x)|−1] +HC(PZy , PZ)

= EXy
[
log

PXy (x)|Jty (x)|−1PX(x)

PX(x)

]
+HC(PZy , PZ)

= EXy
[
log

PXy (x)

PX(x)

]
+ EXy [log |Jty (x)|−1PX(x)] +HC(PZy , PZ)

= KL(PXy , PX) + EXy [log |Jty (x)|−1PX(x)] +HC(PZy , PZ) .

(9)

We also note that the average of cross entropies is the entropy of PZ :

1
2HC(PZ1

, PZ) + 1
2HC(PZ2

, PZ)

=

∫
− 1

2PZ1
(z) logPZ(z)dz +

∫
− 1

2PZ2
(z) logPZ(z)dz

=

∫
− 1

2 (PZ1
(z) + PZ2

(z)) logPZ(z)dz

=

∫
−PZ(z) logPZ(z)dz

= H(PZ) = H( 1
2 (PZ1

+ PZ2
)) .

(10)

Now we look at the second to last term involving EX1 and we subtract the corresponding term from the cross entropy loss to



WeakFlow: Iterative Invertible Distribution Transformations

simplify:

EX1 [log |Jt1(x)|−1PX(x)]− EX1 [− log g(x; t1, t2)]

= EX1
[log |Jt1(x)|−1PX(x)g(x; t1, t2)]

= EX1

[
log |Jt1(x)|−1PX(x)

|Jt1(x)|
|Jt1(x)|+ |Jt2(x)|

]
= EX1

[
log

PX(x)
1
2 (|Jt1(x)|+ |Jt2(x)|)

]
+ log 1

2 .

(11)

This can be derived similarly for the terms involving EX2
:

EX2
[log |Jt2(x)|−1PX(x)]− EX2

[− log(1− g(x; t1, t2))]

= EX2

[
log

PX(x)
1
2 (|Jt1(x)|+ |Jt2(x)|)

]
+ log 1

2 .
(12)

By averaging the two terms from Eqn. 11 and Eqn. 11, we get a KL term:

1
2

(
EX1

[
log

PX(x)
1
2 (|Jt1(x)|+ |Jt2(x)|)

]
+ log 1

2

+ EX2

[
log

PX(x)
1
2 (|Jt1(x)|+ |Jt2(x)|)

]
+ log 1

2

)
=

∫
1
2PX1

(x) log
PX(x)

1
2 (|Jt1(x)|+ |Jt2(x)|)

dx

+

∫
1
2PX2(x) log

PX(x)
1
2 (|Jt1(x)|+ |Jt2(x)|)

dx− log 2

=

∫
1
2 (PX1

(x) + PX2
(x)) log

PX(x)
1
2 (|Jt1(x)|+ |Jt2(x)|)

dx− log 2

=

∫
PX(x) log

PX(x)
1
2 (|Jt1(x)|+ |Jt2(x)|)

dx− log 2

= KL(PX ,
1
2 (|Jt1(x)|+ |Jt2(x)|))− log 2

= KL( 1
2 (PX1

+ PX2
), 1

2 (|Jt1(x)|+ |Jt2(x)|))− log 2 .

(13)

By combining the results above, we can derive the result from the theorem:

I(Z, Y ) = JSD(PZ1
, PZ2

)

= 1
2 (KL(PZ1 , PZ) + KL(PZ2 , PZ))

= 1
2

(
KL(PX1

, PX) + EX1
[log |Jt1(x)|−1PX(x)] +HC(PZ1

, PZ) (By Eqn. 9)

+ KL(PX2
, PX) + EX2

[log |Jt2(x)|−1PX(x)] +HC(PZ2
, PZ)

)
= JSD(PX1

, PX2
) + 1

2HC(PZ1
, PZ) + 1

2HC(PZ2
, PZ) (Definition of JSD)

+ 1
2

(
EX1

[log |Jt1(x)|−1PX(x)] + EX2
[log |Jt2(x)|−1PX(x)]

)
= JSD(PX1

, PX2
) +H( 1

2 (PZ1 + PZ2)) (By Eqn. 10)

+ 1
2

(
EX1

[log |Jt1(x)|−1PX(x)] + EX2
[log |Jt2(x)|−1PX(x)]

)
= JSD(PX1 , PX2) + 1

2 (EX1 [− log g(x; t1, t2)] + EX2 [− log(1− g(x; t1, t2))])

− 1
2 (EX1

[− log g(x; t1, t2)] + EX2
[− log(1− g(x; t1, t2))])

+ 1
2

(
EX1 [log |Jt1(x)|−1PX(x)] + EX2 [log |Jt2(x)|−1PX(x)]

)
+H( 1

2 (PZ1
+ PZ2

)) (Inflation by cross entropy classification term)

= JSD(PX1 , PX2) + 1
2 (EX1 [− log g(x; t1, t2)] + EX2 [− log(1− g(x; t1, t2))])

+ KL( 1
2 (PX1

+ PX2
), 1

2 (|Jt1(x)|+ |Jt2(x)|)) +H( 1
2 (PZ1

+ PZ2
))− log 2 . (By Eqn. 13)
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Corollary 4 (Reduction in Classification Loss Term). The shared parts of classifier destructors (i.e., (tpre, tpost)) will not mod-
ify the mutual information, and the non-shared parts (i.e., (tmid,1, tmid,2)) will reduce the classification loss term in Theorem 1,
i.e. G(tmid,1, tmid,2) ≤ G(id, id) = log 2, where G(t1, t2) = 1

2 (EX1
[− log g(x; t1, t2)] + EX2

[− log(1− g(x; t1, t2))]).

Proof of Cor. 4. We remember the well-known invariance property of mutual information under invertible transformations:
If t is an invertible function and Z , t(X), then I(X,Y ) = I(Z, Y ). Thus, both of the shared pre and post processing
transformations (tpre and tpost) do not change the mutual information.

The main idea that we want to prove next is that, if we fit a classifier f by minimizing cross entropy loss, i.e.,

f̂ = arg min
f

EX1 [− log f(x)] + EX2 [− log(1− f(x))] , (14)

then any classifier destructors (tmid,1, tmid,2) that are consistent with f̂ will reduce the classification loss term from Theorem 1.
Thus, we show that the middle non-shared part (tmid,1, tmid,2) will reduce the classification term in Theorem 1 denoted by
G(t1, t2). First let us note the following two facts:

g(x; id, id) =
|Jid|

|Jid|+ |Jid|
= 1

2 (15)

G(id, id) = 1
2 (EX1

[− log g(x; id, id)] + EX2
[− log(1− g(x; id, id))])

= 1
2

(
EX1

[
− log 1

2

]
+ EX2

[
− log(1− 1

2 )
])

(16)
= log 2 .

Now we can derive the final result using the classifier consistency property and the definition of the minimization in where
we assume that f(x) = 1/2 is one of the possible classifers:

G(tmid,1, tmid,2)

= 1
2 (EX1

[− log g(x; tmid,1, tmid,2)] + EX2
[− log(1− g(x; tmid,1, tmid,2))])

= 1
2

(
EX1

[
− log f̂(x)

]
+ EX2

[
− log(1− f̂(x))

])
(Classifier consistency Def. 1)

= min
f

1
2 (EX1 [− log f(x)] + EX2 [− log(1− f(x))]) (Classification minimization via Eqn. 14)

≤ 1
2

(
EX1

[
− log 1

2

]
+ EX2

[
− log(1− 1

2 )
])

(Minimum is less than one particular value)

= 1
2 (EX1

[− log g(x; id, id)] + EX2
[− log(1− g(x; id, id))]) (Eqn. 15)

= G(id, id) = log 2 . (Eqn. 16)

The inequality holds as long as f(x) = 1/2 is a possible function in the function class being considered—a nearly trivial
constraint to satisfy.

Proposition 2 (Naı̈ve Bayes Classifier Destructors). Given a naı̈ve Bayes classifier with PY (1) = PY (2) = 1
2 : f(x) =∏m

i=1 P̂X1,i
(xi)∏m

i=1 P̂X1,i
(xi)+

∏m
i=1 P̂X2,i

(xi)
, the following feature-wise composite transformations are Wasserstein classifier destructors:

ty(x) = [d−1
bary,1(dy,1(x1)), d−1

bary,2(dy,2(x2)), · · · , d−1
bary,m(dy,m(xm))] , where dy,i = DensDestructor(P̂Xy,i), d−1

bary,i =

DensDestructor(bary(P̂X1,i
, P̂X2,i

)), and bary(·, ·) denotes the Wasserstein barycenter distribution.

Proof of Proposition 2. Let tpre = id, tpost(x) = [d−1
bary,1(x1), d−1

bary,2(x2), · · · , d−1
bary,m(xm)], and tmid,y(x) ≡ ty(x) =

[dy,1(x1), dy,2(x2), · · · , dy,m(xm)] (where notation on mid is suppressed for notational simplicity) be the composite
components from the definition of classifier destructors Def. 3. We first prove the classifier consistency of (tmid,1, tmid,2) and
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the naı̈ve Bayes classifier defined in the proposition:

g(x; t1, t2) =
|Jt1(x)|

|Jt1(x)|+ |Jt2(x)|
(Def. 3)

=

∏m
i=1 |Jt1,i(xi)|

(
∏m
i=1 |Jt1,i(xi)|+

∏m
i=1 |Jt2,i(xi)|)

(Jacobian is diagonal because element-wise transformations)

=

∏m
i=1 P̂X1,i

(xi)

(
∏m
i=1 P̂X1,i

(xi) + P̂X2,i
(xi))

(Definition of density destructors)

= f(x) .

The Wasserstein barycenter mapping property (Def. 2) for each dimension can be established as follows. First, we know
that for a univariate distribution the optimal Monge map between Pα to Pβ is the composition of CDF and inverse CDF
functions respectively (Peyré & Cuturi, 2019):

M∗α→β = F−1
Pβ
◦ FPα . (17)

Second, the McCann interpolation gives us the optimal transport map to the barycenter between these two distributions as
(Peyré & Cuturi, 2019):

M∗α→bary = 1
2 (id +M∗α→β) (18)

= 1
2 (id +F−1

β ◦ Fα) . (19)

Third, the barycenter quantile function for 1D distributions is given as (Peyré & Cuturi, 2019, Remark 9.6):

F−1
bary(u) = 1

2 (F−1
α (u) + F−1

β (u)) (20)

By combining these facts, we can now derive the result:

tα,i(xi) = d−1
bary,i(dα,i(xi)) (By definition)

= d−1
bary,i(Fα,i(xi)) (CDF is 1D density destructor)

= 1
2 (F−1

α,i (Fα,i(xi)) + F−1
β,i (Fα,i(xi))) (Eqn. 20)

= 1
2 (xi + F−1

β,i (Fα,i(xi)))

= 1
2 (xi +M∗α→β,i(xi)) (Eqn. 17)

= M∗α→bary,i(xi) , (Eqn. 18)

where the same derivation holds for α = 1 (β = 2) or vice versa with α = 2 (β = 1). Thus, the full transformation has the
Wasserstein barycenter mapping property.

Proposition 3 (Gaussian Bayes Classifier Destructors). Given a Gaussian Bayes classifier: f(x) =
PN(µ1,Σ1)(x)

PN(µ1,Σ1)(x)+PN(µ2,Σ2)(x) , the following composite transformations are Wasserstein classifier destructors: ty = d−1
bary ◦ dy ,

where dy(x) , Φ(Ay(x−µy)) and dbary(x) , Φ(Σ
−1/2
bary (x−µbary)) are density destructors forPN (µy,Σy) andPN (µbary,Σbary)

respectively, andAy , Σ
−1/2
bary

1
2 (I+By) whereBy , Σ

−1/2
y (Σ

1/2
y ΣỹΣ

1/2
y )1/2Σ

−1/2
y is the projection matrix for the optimal

Monge map between the two class distributions (if y = 1, then ỹ = 2 or vice versa).

Proof of Proposition 3. As a point of notation, we will use Φ to denote the element-wise application of the standard normal
CDF function and φ is the element-wise density function of a standard normal function. Similarly Φ−1 is the inverse CDF
of a standard normal function applied element-wise. First, we want to prove that the following transformations are density
destructors for PN (µy,Σy) and PN (µbary,Σbary) respectively:

dy(x) , Φ(Ay(x− µy)) (21)

dbary(x) , Φ(Σ
−1/2
bary (x− µbary))) , (22)
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where

µbary = 1
2 (µ1 + µ2) (23)

Σbary , Σ
−1/2
1 ( 1

2 (Σ1 + (Σ
1/2
1 Σ2Σ

1/2
1 )1/2))2Σ

−1/2
1 (24)

Ay , Σ
−1/2
bary

1
2 (I +By) (25)

By , Σ−1/2
y (Σ1/2

y ΣỹΣ1/2
y )1/2Σ−1/2

y . (26)

For dy and dbary to be density destructors, we must check that: |Jdy (x)| = PN (µy,Σỹ) and similarly for dbary. First, we
check for dbary:

|Jdbary(x)| = φ(Σ
−1/2
bary (x− µbary))|Σ−1/2

bary |

= |Σ−1/2
bary |(2π)−1/2 exp(− 1

2 (Σ
−1/2
bary (x− µbary))T (Σ

−1/2
bary (x− µbary)))

= (2π|Σbary|)−1/2 exp(− 1
2 (x− µbary)TΣ−1

bary(x− µbary))

= PN (x;µbary,Σbary) .

(27)

This can be done similarly for dy if we can prove that ATy,ỹAy = Σ−1
y . To do this, we will define the following matrix:

Cy , 1
2 (Σy + (Σ1/2

y ΣỹΣ1/2
y )1/2)Σ−1/2

y . (28)

With this definition, we can derive that

CTy Cy

= ( 1
2 (Σy + (Σ1/2

y ΣỹΣ1/2
y )1/2)Σ−1/2

y )T ( 1
2 (Σy + (Σ1/2

y ΣỹΣ1/2
y )1/2)Σ−1/2

y )

= Σ−1/2
y

1
2 (Σy + (Σ1/2

y ΣỹΣ1/2
y )1/2)( 1

2 (Σy + (Σ1/2
y ΣỹΣ1/2

y )1/2)Σ−1/2
y )

= Σ−1/2
y ( 1

2 (Σy + (Σ1/2
y ΣỹΣ1/2

y )1/2))2Σ−1/2
y

= Σbary .

(29)

And we can derive our needed result:

ATyAy

= (Σ
−1/2
bary

1
2Σ−1/2

y (Σy + (Σ1/2
y ΣỹΣ1/2

y )1/2)Σ−1/2
y )T

× (Σ
−1/2
bary

1
2Σ−1/2

y (Σy + (Σ1/2
y ΣỹΣ1/2

y )1/2)Σ−1/2
y )

= 1
2Σ−1/2

y (Σy + (Σ1/2
y ΣỹΣ1/2

y )1/2Σ−1/2
y Σ

−1/2
bary Σ

−1/2
bary

× 1
2Σ−1/2

y (Σy + (Σ1/2
y ΣỹΣ1/2

y )1/2)Σ−1/2
y

= Σ−1/2
y [ 1

2 (Σy + (Σ1/2
y ΣỹΣ1/2

y )1/2Σ−1/2
y ]Σ−1

bary

× [ 1
2Σ−1/2

y (Σy + (Σ1/2
y ΣỹΣ1/2

y )1/2)]Σ−1/2
y

= Σ−1/2
y CyΣ−1

baryC
T
y Σ−1/2

y

= Σ−1/2
y Cy(CTy Cy)−1CTy Σ−1/2

y

= Σ−1/2
y CyC

−1
y (CTy )−1CTy Σ−1/2

y

= Σ−1/2
y IΣ−1/2

y

= Σ−1
y .

(30)

Thus, both dy and dbary are in fact density destructors for PN (µy,Σy) and PN (µbary,Σbary) respectively.
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Given this, it is easy to show the classifier destructor property for the destructors tmid,y ≡ ty:

g(x; t1, t2) =
|Jt1(x)|

|Jt1(x)|+ |Jt2(x)|
(Definition of g)

=
|Jd1

(x)|
|Jd1(x)|+ |Jd2(x)|

(Definition of transformations)

=
PN (µ1,Σ1)(x)

PN (µ1,Σ1)(x) + PN (µ2,Σ2)(x)
(Density destructor property)

= f(x) . (Definition of Gaussian Bayes classifier)

Now we want to prove the Wasserstein barycenter mapping property (Def. 2, i.e., that the composition of ty→bary = d−1
bary ◦dy

is actually the barycenter optimal transformation. First we know that the optimal transport map to the barycenter is given by
the middle point of McCann’s interpolation (Peyré & Cuturi, 2019):

M∗y→bary(x) = 1
2 (x +M∗y→ỹ(x)) , (31)

where

M∗y→ỹ = By(x− µy) + µỹ (32)

is the optimal transport map between y and ỹ (Peyré & Cuturi, 2019). Now let’s start with the definition of our composite
transformation and show that this composition is equivalent:

ty→bary(x) , d−1
bary(dy(x))

= d−1
bary(Φ(Ay(x− µy))) (Eqn. 21)

= Σ
1/2
baryΦ−1(Φ(Ay(x− µy))) + µbary (Eqn. 22)

= Σ
1/2
baryAy(x− µy) + µbary (Inverse cancellation)

= Σ
1/2
baryΣ

−1/2
bary

1
2 (I +By)(x− µy) + µbary (Eqn. 25)

= 1
2 (I +By)(x− µy) + µbary

= 1
2 (x− µy +By(x− µy)) + µbary

= 1
2 (x +By(x− µy) + 2µbary − µy)

= 1
2 (x +By(x− µy) + (µy + µỹ)− µy) (Eqn. 23)

= 1
2 (x +By(x− µy) + µỹ)

= 1
2 (x +M∗y→ỹ(x)) (Eqn. 32)

≡M∗y→bary(x) . (Eqn. 31)


