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Abstract
We present TraDE, an attention-based architecture
for auto-regressive density estimation. Our model
is trained against both the standard maximum like-
lihood objective as well as a Maximum Mean
Discrepancy loss to ensure that samples from the
estimate resemble the training data distribution.
The use of self-attention means that the model
need not retain conditional sufficient statistics
during the auto-regressive process beyond what
is needed for each covariate. TraDE performs
significantly better than existing approaches such
as flow based estimators on standard tabular and
image-based benchmarks in terms of the log-
likelihood on held-out data. Furthermore, we
present a suite of tasks such as regression using
generated samples, out-of-distribution detection,
and robustness to outliers in the training data and
demonstrate that TraDE works well in these sce-
narios. Long version of paper is available here
https://arxiv.org/abs/2004.02441.

1. Introduction

Density estimation involves estimating a probability density
p(x), given independent, identically distributed (iid) sam-
ples from it. This is a versatile and important problem as
it allows one to generate synthetic data or perform novelty
and outlier detection. It is also an important subroutine in
applications of graphical models. Deep neural networks are
a powerful function class and learning complex distributions
with them is promising. This has resulted in a resurgence of
interest in the classical problem of density estimation.

One of the more popular techniques for density estimation
is to sample data from a simple reference distribution and
then to learn a (sequence of) invertible transformations that
allow us to adapt it to a target distribution. Flow-based meth-
ods (Durkan et al., 2019b) employ this with great success. A
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Figure 1. TraDE is well suited to density estimation of Transform-
ers. Left: Bumblebee, Right: estimate.

more classical approach is to decompose p(x) in an iterative
manner via conditional probabilities p(xi+1|x1...i) and fit
this distribution using the data (Murphy, 2013). One may
even employ implicit generative models to sample from p(x)
directly, perhaps without the ability to compute the likeli-
hood. Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014) that reign supreme for image synthe-
sis (Karras et al., 2017) belong to this class.

Implementing above methods however requires special care,
e.g., the normalizing transform requires the network to be
invertible with an efficiently computable Jacobian. Auto-
regressive models using recurrent networks are difficult to
scale to high-dimensional data due to the need to store a
potentially high-dimensional conditional sufficient statistic
(and also due to vanishing gradients). Generative models
can be difficult to train and GANs lack a closed density
model. Much of the current work is devoted to mitigating
these issues.

Contributions. We focus on auto-regressive models:
• We introduce TraDE, a simple but novel auto-

regressive density estimator that uses self-attention to
approximate arbitrary continuous and discrete condi-
tional densities. An additional innovation that we pro-
pose is to use a recurrent neural network (RNN)-based
input embedding for the self-attention network. Our
model is simpler and more flexible than contemporary
architectures such as (Durkan et al., 2019b;a; Kingma
et al., 2016; De Cao et al., 2019) for this problem.

• The maximum likelihood objective in current den-
sity estimation methods does not directly impose con-
straints on sample fidelity which affects performance
on downstream tasks such as classification using the
sampled data. To fix this, we introduce a Maximum
Mean Discrepancy (MMD)-based regularizer in the
training objective of TraDE.

• Log-likelihood on held-out data is the prevalent metric

https://arxiv.org/abs/2004.02441
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to evaluate density estimators. However, this only pro-
vides a partial view of the performance in real-world
applications. We propose a suite of experiments to
systematically evaluate the performance of density es-
timators in downstream tasks such as classification and
regression using generated samples, detection of out-
of-distribution samples, and robustness to outliers in
the training data.

• We provide extensive empirical evidence of strong per-
formance of TraDE on standard benchmarks along with
thorough ablation experiments.

2. Background and Related Work

Given a dataset
{
x1, . . . , xn

}
where each sample xk ∈ Rd

is drawn iid from some probability distribution p(x), the
maximum-likelihood formulation of density estimation finds
a θ-parameterized distribution qθ such that

θ̂ = argmax
θ

1

n

n∑
i=1

log q(xi; θ). (1)

The candidate distribution q can be parameterized in a vari-
ety of ways as we discuss next.

Normalizing flows write x ∼ q as a transformation of sam-
ples z from some base distribution pz from which one can
draw samples easily (Papamakarios et al., 2019). If this map-
ping is fθ : z → x, two distributions can be related using the

determinant of the Jacobian as q(x; θ) := pz(z)
∣∣∣dfθdz

∣∣∣−1. A
key property of flow-based models is that fθ is a diffeomor-
phism, i.e., it is invertible and both fθ and f−1θ are differen-
tiable. This allows gradient-based minimization of (1) which
involves a term of the form log |dfθ/dz|. Good perfor-
mance using normalizing flows requires that the mapping fθ
be powerful yet invertible with a Jacobian that can be com-
puted efficiently. There are a number of techniques in the
literature to achieve this, e.g., linear mappings, planar/radial
flows (Rezende & Mohamed, 2015; Tabak & Turner, 2013),
Sylvester flows (Berg et al., 2018), coupling (Dinh et al.,
2014) and auto-regressive models (Larochelle & Murray,
2011). One may also compose the transformations, e.g.,
using monotonic mappings fθ in each layer (Huang et al.,
2018; De Cao et al., 2019).

Auto-regressive models have their roots in probabilistic
graphical models (Koller & Friedman, 2009). These models
factorize the distribution qθ as a product of univariate con-
ditional distributions q(x; θ) :=

∏
i qi(xi|x1, . . . xi−1; θ).

Note that in this case the Jacobian is a lower-triangular
matrix with entries dxi/dxj and the determinant is sim-
ply a product of the entries along the diagonal. Parame-
ters of the conditionals in the product may be shared using
RNNs (Oliva et al., 2018; Kingma et al., 2016).

For high-dimensional data, the challenge lies in handling
the increasingly large state space x1, . . . , xi−1 required to
sample xi. In a latent-variable autoregressive model past
data is stored in some representation hi which is updated via
a function hi+1 = g(hi, xi). This overcomes the problem
of very high dimensional estimation, albeit at the expense of
loss in fidelity. Techniques like masking the computational
paths in a feed-forward network are popular to alleviate
these problems further (Uria et al., 2016; Germain et al.,
2015; Papamakarios et al., 2017). Choosing a good variable
ordering for the factorization of q is paramount in auto-
regressive models; several algorithms train ensembles over
multiple orderings for good performance. While autoregres-
sive models are commonly applied to natural language and
time series data, this setting only involves variables that are
already naturally ordered (Chelba et al., 2013). In contrast,
we consider continuous (and discrete) density estimation
of vector valued data. e.g. tabular data, where the underly-
ing ordering and dependencies between variables is often
unknown.

Generative models focus on drawing samples from the es-
timated distribution that look resemble the true distribution
of data. There is a rich history of learning explicit models
from variational inference (Jordan et al., 1999) that allow
both drawing samples and estimating the log-likelihood or
implicit models such as Generative Adversarial Networks
(GANs, see (Goodfellow et al., 2014)) where one may only
draw samples. These have been shown to work well for natu-
ral images (Kingma & Welling, 2013) but have not obtained
similar performance for tabular data.

3. The Architecture of TraDE

TraDE is an auto-regressive density estimator that factorizes
distribution q as

q(x; θ) :=
n∏
i=1

qi(xi|x1, . . . , xi−1; θ); (2)

Here the ith univariate conditional qi conditions the feature
xi upon all the features preceding it, and may be easier to
model than a high-dimensional joint distribution. The pa-
rameters θ of our model are shared amongst the conditionals.
Our main observation is that the auto-regressive nature of
the conditionals can be accurately modeled using the at-
tention mechanism in a Transformer architecture (Vaswani
et al., 2017).

Self-attention. The Transformer is a neural sequence
transduction model and consists of a multi-layer en-
coder/decoder pair. We only need the encoder for building
TraDE. The encoder takes the input sequence (x1, . . . , xd)
and predicts the ith-conditional qi(xi|x1, . . . , xi−1; θ).
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Each conditional is parametrized as a mixture of multi-
variate Gaussians, each with mean that depends on
x1, . . . , xi−1 and a diagonal covariance:

qi(xi|x1, . . . , xi−1; θ) =
m∑
k=1

pk N(xi;µk, σ
2
kI). (3)

with the mixture probabilities
∑m
k=1 pk = 1. All the

three quantities pk, µk and σk are predicted by the model
as outputs. They are parametrized by θ and depend on
x1, . . . , xi−1. The crucial property of the Transformer’s
encoder is the self-attention module outputs a representation
that captures correlations in different parts of its input. In a
nutshell, the self-attention map outputs zi =

∑d
j=1 αjϕ(xj)

where ϕ(xj) is an embedding of the feature xj and normal-
ized weights αj = 〈ϕ(xi, ϕ(xj)〉 compute the similarity
between the embedding of xi and that of xj . Self-attention
therefore amounts to a linear combination of the embedding
of each feature with features that are more similar to xi
getting a larger weight. We also use multi-headed attention
like (Vaswani et al., 2017) which computes self-attention
independently for different embeddings. Self-attention is
the crucial property that allows TraDE to handle long-range
and complex correlations in the input features; effectively
this eliminates the vanishing gradient problem in RNNs by
allowing direct connections between far away input neu-
rons (Vaswani et al., 2017). Self-attention also enables
permutation equivariance and naturally enables TraDE to
be agnostic to the ordering of the features.

Masking is used to prevent xi, xi+1, . . . , xd from taking
part in the computation of the output qi and thereby preserve
the auto-regressive property of our density estimator. We
keep residual connections, layer normalization and dropout
in the encoder unchanged from the original architecture
of (Vaswani et al., 2017). The final layer of the encoder,
and our model, is a fully-connected layer where the ith

predicts the mixture probabilities pk, the means µk and the
corresponding standard deviations σ2

k.

Positional encoding involves encoding the position k of
feature xk and is an integral part of the Transformer; the
original authors append Fourier position features to each
input. Picking hyper-parameters for the frequencies is how-
ever difficult and it does not work well either for density
estimation (see Section 4). An alternative that we propose
is to use a simple recurrent network at the input to embed
the input values at each position. Here the time-steps of the
RNN implicitly encode the positional information, and we
use a Gated Recurrent Unit (GRU) model to better handle
long-range dependencies (Cho et al., 2014). This parallels
recent findings from language modeling where (Wang et al.,
2019) also used an initial RNN embedding to generate in-
puts to the transformer. Observe that the GRU does not slow

down TraDE at inference time since sampling is performed
in auto-regressive fashion anyway and remains O(d). The
complexity of training is marginally higher but this is more
than made up for by the superior performance.

Remark 1 (Regularization in density estimation). The
maximum-likelihood objective in (1) does not have a reg-
ularization term that would help with outliers. There ex-
ists a large number of classical techniques, such as max-
imum entropy and approximate moment matching tech-
niques (Phillips et al., 2004; Altun & Smola, 2006) that
can be used. They map to some extent to the parameter
based capacity control in deep learning, such as Dropout
or input permutation (or they’re implicitly determined by
the choice of architecture). Instead, we use MMD to penal-
ize differences between training data and samples from the
model directly. This allows us to use powerful models like
the Transformer with less risk of overfitting.

Remark 2 (Comparison to other architectures). Our ar-
chitecture for TraDE can be summarized as using the en-
coder of a Transformer with appropriate masking to achieve
auto-regressive dependencies with an output layer consist-
ing of a mixture of multi-variate Gaussians and an input
embedding layer built using an RNN. It is more flexible
than architectures for normalizing flows without restrictive
constraints on the input-output map (e.g. invertible func-
tions, Jacobian computational costs, etc.) As compared to
other auto-regressive models, TraDE can handle long-range
dependencies and does not need to permute input features
during training/inference.

Unlike discrete language data, tabular datasets contain many
numerical values and their categorical features do not share
a common vocabulary. Thus existing applications of Trans-
formers to such data remain limited. Beyond its insensitivity
to feature order, Transformers are a good fit for tabular data
because their lower layers only model lower-order feature
interactions (starting with pairwise interactions in the first
layer and building up in each additional layer). This relates
them to ANOVA (Wahba et al., 1995) which only progres-
sively blend features unlike in a fully-connected network.

Finally, the objective/architecture of TraDE is general
enough to handle both continuous and discrete data, unlike
many existing density estimators. As experiments in Sec-
tion 4 shows these properties make TraDE very well-suited
for auto-regressive density estimation.

3.1. Regularization using Maximum Mean Discrepancy
(MMD)

An alternative to maximum likelihood estimation, and in
some cases a dual to it, is to perform non-parametric mo-
ment matching (Altun & Smola, 2006). One can combine
a log-likelihood loss and a two-sample discrepancy loss to
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ensure high fidelity, i.e., the samples resemble those from
the original dataset.

We can test whether two distributions p and q supported on
a space X are different using samples drawn from each of
them by finding a smooth function that is large on samples
drawn from p and small on samples drawn from q. If x ∼ p
and y ∼ q, then p = q if and only if Ex [f(x)] = Ey [f(y)]
for all bounded continuous functions f on X (Lemma 9.3.2
in (Dudley, 2018)). We can exploit this result computation-
ally by restricting the test functions to some class f ∈ F and
finding the worst test function. This leads to the Maximum
Mean Discrepancy (MMD) metric defined next (Fortet &
Mourier, 1953; Müller, 1997; Gretton et al., 2012; Sriperum-
budur et al., 2016). For a class F of functions f : X → R,
the MMD between distributions p, q is

MMD[F , p, q] = sup
f∈F

(
Ex∼p [f(x)]−Ey∼q [f(y)]

)
. (4)

It is cumbersome to find the supremum over a general class
of functions F to compute the MMD. We can however
restrict F to be the unit ball in a universal Reproducing
Kernel Hilbert Space (RKHS) (Gretton et al., 2012)) with
kernel k. The MMD is a metric in this case and is given by

MMD2[k, p, q] (5)

= E
x,x′∼p

[k(x, x′)]− 2 E
x∼p,y∼q

[k(x, y)] + E
y,y′∼p

[k(y, y′)]

With a universal kernel (e.g. Gaussian, Laplace), MMD will
capture any difference between distributions (Steinwart,
2001). We can easily obtain an empirical estimate of the
MMD above using samples (Gretton et al., 2012).

3.2. The Loss Function of TraDE

The MLE objective in (1) only forces our network to con-
sider how it is modeling each conditional, rather than how it
is modeling/sampling the full joint distribution. To encour-
age both, we combine the MLE objective with a regular-
ization term based on MMD in (5) to get the loss function
of TraDE. The former ensures consistency of the estimate
while the MMD term is effective in detecting obvious dis-
crepancies when the samples drawn from the model do not
resemble samples in the training dataset. In theory, MMD
with a universal kernel would also produce consistent esti-
mates, but maximizing likelihood ensures our estimate is
statistically efficient. In practice a combination of both ob-
jectives yields superior results, and makes performance less
dependent on the MMD kernel bandwidth. The objective
minimized in TraDE is

− 1

nd

n∑
i=1

d∑
j=1

log qj(x
i
j |xi1, . . . , xij−1; θ)+λMMD2[k, p, q(θ)].

(6)

where hyper-parameter λ ≥ 0 controls the degree of regular-
ization. We have divided the first term by the dimensionality
d because the MMD term does not scale with d. This objec-
tive is minimized using mini-batch gradient-based updates.

The gradient of the log-likelihood term can be computed
using standard back-propagation. Computing the gradient of
the MMD term involves differentiating the samples from qθ
with respect to the parameters θ. For continuous-valued data,
this is easily done using the reparametrization trick (Kingma
& Welling, 2013) since we model each conditional as a
mixture of Gaussians. For categorical features, we calculate
the gradient using the Gumbel softmax trick (Maddison
et al., 2016). The objective/architecture of TraDE is thus
general enough to handle both continuous and discrete data,
unlike many existing density estimators.

4. Experiments

We first evaluate TraDE both qualitatively (Fig. 2 and Fig. 3
in the Supplementary Material) and quantitatively on stan-
dard benchmark datasets (Section 4.1). We then present
additional ways to evaluate the performance of density es-
timators in downstream tasks (Appendix A.1) along with
some ablation studies (Appendix A.2). Details for all the
experiments in this section, including hyper-parameters, are
provided in the Supplementary Material.

Figure 2. Qualitative evaluation on 2-dimensional datasets. We
train TraDE on samples from six 2-dimensional densities and
evaluate the model likelihood over the entire domain by sampling
a fine grid; original densities are shown in rows 1 and 3 and
estimated densities are shown in rows 2 and 4. This setup is similar
to (Nash & Durkan, 2019). These distributions are highly multi-
modal with complex correlations. Nevertheless TraDE learns an
accurate estimate of the true density across a large number of
examples.
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Table 1. Average test log-likelihood in nats (higher is better) for benchmark datasets. Entries marked with ∗ evaluate standard
deviation across 3 independent runs of the algorithm; all others are mean ± standard error. TraDE achieves significantly better log-
likelihood than other algorithms on all datasets except MINIBOONE. This is in spite of the fact that some methods, e.g., MAF train an
ensemble.

POWER GAS HEPMASS MINIBOONE BSDS300

REAL NVP 0.17 ± 0.01 8.33 ± 0.14 -18.71 ± 0.02 -13.84 ± 0.52 153.28 ± 1.78

MADE MOG 0.4 ± 0.01 8.47 ± 0.02 -15.15 ± 0.02 -12.27 ± 0.47 153.71 ± 0.28

MAF MOG 0.3 ± 0.01 9.59 ± 0.02 -17.39 ± 0.02 -11.68 ± 0.44 156.36 ± 0.28

FFJORD 0.46 8.59 -14.92 -10.43 157.4

NAF 0.62 ± 0.01∗ 11.96 ± 0.33∗ -15.09 ± 0.4∗ -8.86 ± 0.15∗ 157.43 ± 0.3∗

TAN 0.6 ± 0.01 12.06 ± 0.02 -13.78 ± 0.02 -11.01 ± 0.48 159.8 ± 0.07

BNAF 0.61 ± 0.01∗ 12.06 ± 0.09∗ -14.71 ± 0.38∗ -8.95 ± 0.07∗ 157.36 ± 0.03∗

NSF 0.66 ± 0.01∗ 13.09 ± 0.02∗ -14.01 ± 0.03∗ -9.22 ± 0.48∗ 157.31 ± 0.28∗

AEM 0.70 ± 0.01 13.03 ± 0.01 -12.85 ± 0.01 -10.17 ± 0.26 158.71 ± 0.14

TRADE (OURS) 0.73 ± 0.00∗ 13.27 ± 0.01∗ -12.01 ± 0.03∗ -9.49 ± 0.13∗ 160.01 ± 0.02∗

4.1. Results on Benchmark Datasets

We follow the experimental setup of (Papamakarios et al.,
2017) to ensure the same training/validation/test dataset
splits in our evaluation. In particular, the preprocessing of all
the datasets is kept the same as that of (Papamakarios et al.,
2017). The MNIST dataset (LeCun et al., 1990) is used
to evaluate TraDE on high-dimensional image-based data.
We follow the variational inference literature, e.g., (Oord
et al., 2016), and use the binarized version of MNIST. The
datasets for anomaly detection tasks are from the Outlier
Detection DataSets (OODS) library (Rayana, 2016). We
normalized the OODS data by subtracting the per-feature
mean and dividing by the standard deviation. We show the
results on benchmark datasets in Table 1. There is a wide di-
versity in the algorithms for density estimation but we make
an effort to provide a complete comparison of known results
irrespective of the specific methodology. Some methods
like Neural Spline Flows (NSF) by (Durkan et al., 2019b)
are quite complex to implement; others like Masked Au-
toregressive Flows (MAF) (Papamakarios et al., 2017) use
ensembles to estimate the density; some others like Au-
toregressive Energy Machines (AEM) of (Nash & Durkan,
2019) average the log-likelihood over a large number of
importance samples. As the table shows, TraDE obtains per-
formance improvements over all these methods in terms of
the log-likelihood. This performance is persistent across all
datasets except MINIBOONE where TraDE is competitive
although not the best. The improvement is drastic for the
POWER, HEPMASS and BSDS300.

We also evaluate TraDE on the MNIST dataset in terms of
the log-likelihood on test data. As Table 2 shows TraDE
obtains high log-likelihood even compared to sophisticated
models such as Pixel-RNN (Oord et al., 2016). This is a
difficult dataset for density estimation because of the high
dimensionality. We also show the quality of the samples

generated by the model in Fig. 3.

Table 2. Negative average test log-likelihood in nats (smaller is
better) on MNIST.

LOG-LIKELIHOOD

VAE 82.14 ± 0.07
PLANAR FLOWS 81.91 ± 0.22
SYLVESTER 80.22 ± 0.03
BLOCK NAF 80.71 ± 0.09
PIXELRNN 79.20
TRADE (OURS) 78.92 ± 0.00

5. Discussion

This paper demonstrates that self-attention is naturally
suited to building auto-regressive models with strong per-
formance in density estimation tasks. Our proposed method
is more flexible than architectures for normalizing flows
and can handle long-range dependencies as compared to
other auto-regressive models. We contribute a suite of down-
stream tasks such as regression, out of distribution detection,
and robustness to noisy data, which evaluate how useful the
density estimates are in real-world applications. Our other
contribution is a new regularized likelihood objective for
density estimation with an MMD-penalty to ensure mod-
els produce high-fidelity samples during training. This is
reminiscent of maximum entropy modeling which seeks a
distribution matching moments between empirical averages
and the expectations generated by the model. In the par-
lance of maximum entropy, we are effectively combining
dual constraints (via log-likelihood) and primal ones (via
MMD) to ensure a good fit. Additional objectives are appro-
priate since the models we use are not optimal within their
function class and it is advantageous to enforce desirable
constraints directly.
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vers la répartition théorique. In Annales scientifiques de l’École
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A. Tools of the TraDE

x1 x2 x3 x4 x5 x6 x7 x8

x1 x8 x2 x7 x3 x6 x4 x5

Consider the 8-dimensional Markov Random Field shown
here, where the underlying graphical model is unknown in
practice. Consider the following two orders in which to
factorize the autoregressive model: (1, 2, 3, 4, 5, 6, 7, 8) and
(1, 8, 2, 7, 3, 6, 4, 5). In the latter case the model becomes
a simple sequence where e.g. p(x3|x1,8,2,7) = p(x3|x7)
due to conditional independence. A latent variable auto-
regressive model only needs to preserve the most recently
encountered state in this latter ordering. In the first ordering,
p(x3|x1,2) can be be simplified further to p(x3|x2), but we
still need to carry the precise value of x1 along until the
end since p(x8|x1...7) = p(x8|x1,2). This is a fundamental
weakness in models employing RNNs such as (Oliva et al.,
2018). In practice, we may be unable to select a favorable
ordering for columns in a table (unlike for language where
words are inherently ordered), especially as the underlying
distribution is unknown.

The above problem is also seen in sequence modeling, and
Transformers (Vaswani et al., 2017) were introduced to
better model such long-range dependencies through self-
attention. The utility of self-attention is its effectiveness at
maintaining an accurate representation of x<j while pre-
dicting xd, irrespective of the distance between them. A
recurrent network can, in principle, absorb this information
into its hidden state. In fact, Long-Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997) units were en-
gineered specifically to store long-range dependencies until
needed. Nonetheless, storing information costs parameter
space. For auto-regressive factorization where the true con-
ditionals require one to store many variables’ values for
many time steps, the RNN/LSTM hidden state must be un-
desirably large. The following simple lemma formalizes
this.
Lemma 3. Denote by G the graph of an undirected graph-
ical model over random variables x1, . . . , xd. Depending
on the order vertices are traversed in our factorization
the largest number of latent variables a recurrent auto-
regressive model needs to store is bounded from above and
below by the minimum and the maximum number of vari-
ables with a cut edge of the graph G.

The proof is as follows. Given a subset of known variables
S ⊆ {1, . . . d} we want to estimate the conditional distribu-

tion of the variables on the complement C := {1, . . . d}\S.
For this we need to decompose S into the Markov blanket
M of C and its remainder. By definition M consists of the
variables with a cut edge. Since p(xC |xS) = p(xC |xM ) we
are done.

This problem with long-dependencies in auto-regressive
models has been noted before. For instance, recent auto-
regressive models employ masking to eliminate the sequen-
tial operations of recurrent models (Papamakarios et al.,
2017). There are also models like Pixel RNN (Oord et al.,
2016) which explicitly design a multi-scale masking mech-
anism suited for natural images. Note that while there is
a natural ordering of random variables in text/image data,
variables in tabular data do not follow any canonical order-
ing. An alternative to alleviating this state space problem is
to use attention to attend only to parts of the data relevant
for the conditioning.

A.1. Systematic Evaluation of Density Estimators

We propose evaluating density estimation in four canoni-
cal ways, regression using the generated samples, a two-
sample test to check the quality of generated samples, out-
of-distribution detection, and robustness of the density es-
timator to outliers in the training data. This section shows
that TraDE performs well on these tasks which demonstrates
that it not only obtains high log-likelihood on held-out data
but can also be readily used for downstream tasks.

1. Regression using generated samples. First, we create
a regression task where a random variable, say xd is re-
gressed using data from the others x−d = (x1, . . . , xd−1).
The procedure is as follows: we use the training set of the
HEPMASS dataset (d = 21) to fit the density estimator;
create a synthetic dataset with both inputs x−d and targets
xd sampled from the model. Two boosted decision forest-
based regressors are fitted, one on the real data and another
on this synthetic data. Both these regressors are tested on
real test data from the HEPMASS dataset. If the model
synthesizes good samples, one would expect that the test
performance of the regressor fitted on synthetic data would
be comparable to the regressor fitted on real data.

Table 3 shows the results of this experiment. Observe that
the classifier trained on data synthetized by TraDE performs
very similarly to the one trained on the original data. The
MSE of a RNN-based auto-regressive density estimator,
which is higher, is provided for comparison.

Table 3. Mean squared error of regression on HEPMASS.

Real data Synthetic data (TraDE) Synthetic data (RNN)

0.773 0.780 0.803
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2. Two-sample test on the generated data. Next we train
a boosted decision-forest-based classifier to differentiate
between real data and synthesized data. The idea is similar
to a two-sample test (Lopez-Paz & Oquab, 2016) in the
discriminator of a GAN: if the samples generated by the
auto-regressive model are good, the discriminator should
have an accuracy of 50%. As Table 4 shows the samples
generated by TraDE is much closer to the real data than
those generated by the RNN model.

Table 4. Accuracy of the discriminator trained to classify real
data from synthesized data on HEPMASS. These numbers are
the average accuracy of multiple experiments, each of which uses
a different subset of columns x1, (x1, x2), . . . , (x1, . . . , xd) as
featuers for the discriminator.

Synthetic data (TraDE) Synthetic data (RNN)

51 ± 1 % 55 ± 4 %

3. Out-of-distribution detection. This is a classical appli-
cation of density estimation techniques where we seek to
discover unlikely samples in a given dataset. We follow
the setup of Oliva et al. (2018): we call a sample out-of-
distribution if the likelihood of the sample under the model
qθ(x) ≤ t for a chosen threshold t ≥ 0. We compute the
average precision of detecting out-of-distribution samples
by sweeping across different values of t. The resuls are
shown in Table 5. Observe that TraDE obtains extremely
good performance, of more than 0.95 average precision, on
the three datasets.

Table 5. Average precision for out-of-distribution detection
The numbers for NADE, NICE and TAN were (precisely) eye-
balled from the plots of Oliva et al. (2018).

NADE NICE TAN TraDE

Pendigits 0.91 0.92 0.97 0.98
ForestCover 0.87 0.80 0.94 0.95
Satimage-2 0.98 0.975 0.98 1.0

4. MMD regularization builds robustness to outliers in
the data. Real data may contain a large number of out-
liers and in order to be useful on downstream tasks, den-
sity estimation must be insensitive to such outliers. The
maximum-likelihood objective is sensitive to outliers in the
training data. Methods such as NSF (Durkan et al., 2019b)
or MAF (Papamakarios et al., 2017) indirectly mitigate this
sensitivity using permutations of the input data or masking
within hidden layers but these operations are not designed to
be robust to noisy data. We study how TraDE deals with this
scenario. In other words, this experiment directly demon-
strates the effect of MMD regularization. We add noise
to 10% of the entries in the training data; we then fit both

TraDE and NSF on this noisy data; both models are evalu-
ated on clean test data. As Table 6 shows, the degradation of
both TraDE and NSF is about the same; the former obtains
a higher log-likelihood as noted in Table 1.

Table 6. Average test log-likelihood in nats for HEPMASS
dataset with and without additive noise in the training data.

Clean Data Noisy Data

NSF -14.51 -14.98
TraDE -11.98 -12.43

A.2. Ablation Experiments

To understand the effect of the design decisions in TraDE
we disable (or replace) them one at a time. In particular, we
aim to understand the effect of recurrent networks for auto-
regressive models, using only multi-headed self-attention in
the Transformer without the position encoding, the TraDE
model without the MMD regularizer which uses a GRU for
embedding the input, and the full TraDE algorithm.

Table 7. Average test log-likelihood in nats (higher is better) on
benchmark datasets for four algorithms: an RNN for standard
auto-regressive density estimation, a Transformer with multi-head
attention without positional encoding, TraDE with λ = 0 in (6)
and the full TraDE algorithm.

POWER GAS HEPMASS MINIBOONE BSDS300

RNN 0.51 6.26 -15.87 -13.13 157.29
Transformer 0.71 12.95 -15.80 -22.29 134.71
TraDE w/o MMD 0.72 13.26 -12.22 -9.44 159.97
TraDE 0.73 13.27 -12.01 -9.49 160.01

As Table 7 shows, the performance of an RNN as an auto-
regressive model is quite poor for all datasets. Using a
Transformer network (without position encoding) improves
this log-likelihood by a lot but this does not work for all
datasets. The biggest improvement is obtained upon adding
a GRU-based embedding to the Transformer. The MMD
loss improves the log-likelihood by a large amount for HEP-
MASS and a small amount for POWER, the effect for other
datasets is marginal. The other algorithms in this table use
the same hyper-parameters (architecture and training) as
those of TraDE.

Table 8 compares the performance of the GRU-based in-
put encoding against a Transformer with position encoding.
Compare the first row of this table with the second row
of Table 7: the performance of the Transformer with posi-
tion encoding is significantly better than the one without
it. This suggests that incorporating the information about
the position is critical for auto-regressive models. A recur-
rent network to incorporate the position information obtains
significant performance boost as seen in the second row
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of Table 8.

Table 8. Log-likelihood in nats of using position encoding ver-
sus a recurrent network for input embedding.

HEPMASS MINIBOONE BSDS300

Transformer w/ po-
sition encoding

-13.89 -12.28 147.94

TraDE w/o MMD -12.22 -9.44 159.97

B. Sampling MNIST images

To further investigate the quality samples generated by our
model, we show more samples in Fig. 3.

Figure 3. Samples from TraDE fitted on binary MNIST.

C. Hyper-parameters for benchmark datasets

All models are trained for 1000 epochs with the Adam
optimizer. The MMD kernel is a mixture of up to 5
Gaussians for all datasets, i.e., k(x, y) =

∑5
i=1 ki(x, y)

where each ki(x, y) = e−‖x−y‖
2
2/σ

2
i of bandwidths

σi ∈ {1, 2, 4, 8, 16}. Table 9 shows our model’s hyper-
parameters.

Table 9. Hyper-parameters for benchmark datasets.

POWER GAS HEPMASS MINIBOONE BSDS300 MNIST

MMD coefficient λ 0.2 0.1 0.1 0.4 1.2 0.1
Gaussian mixture components 150 100 100 20 100 1
Number of layers 5 8 6 8 5 6
Multi-head attention head 8 16 8 8 2 4
Gradient clipping norm 5 5 5 5 5 5
Hidden neurons 512 400 128 64 128 256
Dropout 0.1 0.1 0.1 0.2 0.3 0.1
Learning rate 3E-4 3E-4 5E-4 5E-4 5E-4 5E-4
Mini-batch size 512 512 512 64 512 16
Weight decay 1E-6 1E-6 1E-6 0 1E-6 1E-6
Gumbel softmax temperature n/a n/a n/a n/a n/a 1.5


