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Abstract

Generating molecular graphs with desired chem-
ical properties driven by deep generative mod-
els provides a very promising way to acceler-
ate the drug discovery process. Such generative
models usually consist of two steps: 1) learn-
ing latent representations, and 2) generation of
molecular graphs. However, to generate novel
and chemically-valid molecular graphs from la-
tent representations is very challenging because of
the chemical constraints and combinatorial com-
plexity of molecular graphs. In this paper, we
propose MoFlow, a flow-based model to learn
invertible mappings between molecular graphs
and their latent representations. MoFlow gener-
ates molecules by first generating bond skeleton
through a Glow based model, then generating
atoms given bonds by a novel graph conditional
flow, and finally combing them into a molecule
with posthoc validity correction. MoFlow has
merits including exact and tractable likelihood
training, efficient one-pass embedding and gen-
eration, chemical validity guarantees, 100% re-
construction of training data, and good generaliza-
tion ability. We validate our model by four tasks:
molecular generation and reconstruction, visual-
ization of the continuous latent space, property
optimization, and constrained property optimiza-
tion. Our MoFlow achieves state-of-the-art per-
formance, which implies its potential efficiency
and effectiveness to explore large chemical space
for drug discovery.
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1. Introduction
Drug discovery aims at finding candidate molecules with
desired chemical properties for clinical trials, which is a
long (10-20 years) and costly ($0.5-$2.6 billion) process
with a high failure rate (Paul et al., 2010; Avorn, 2015).
Recently, deep generative models have demonstrated their
big potential to accelerate the drug discovery process by
exploring large chemical space in a data-driven manner (Jin
et al., 2018; Zhavoronkov et al., 2019). These models usu-
ally first learn a continuous latent space by encoding the
training molecules and then generate novel and optimized
molecules through decoding from the learned latent space
guided by targeted properties (Gómez-Bombarelli et al.,
2018; Jin et al., 2018). However, it is still very challenging
to generate novel and chemically-valid molecules with de-
sired properties since: a) the scale of the chemical space of
drug-like compounds is 1060 (Mullard, 2017) but the scale
of the possibly decoded novel molecules from the learned
latent space for searching is much smaller, and b) decoding
molecular graphs with chemical constraints (e.g., valency
constraints) is a hard combinatorial task.

Prior works leverage different deep generative frameworks
for generating molecular SMILES codes (Weininger et al.,
1989) or molecular graphs, including variational autoen-
coder (VAE)-based models (Kusner et al., 2017; Dai et al.,
2018; Simonovsky & Komodakis, 2018; Ma et al., 2018; Liu
et al., 2018; Bresson & Laurent, 2019; Jin et al., 2018), gen-
erative adversarial networks (GAN)-based models (De Cao
& Kipf, 2018; You et al., 2018), and autoregressive (AR)-
based models (Popova et al., 2019; You et al., 2018). In this
paper, we explore a different deep generative framework,
namely the normalizing flow (Dinh et al., 2014; Madhawa
et al., 2019; Kingma & Dhariwal, 2018), for molecular
graph generation. Compared with above three frameworks,
the flow-based models are the only one which can memorize
and exactly reconstruct all the input data, and at the same
time have the potential to generate more novel, unique and
valid molecules, which implies its potential capability of
deeper exploration of the huge chemical space. To our best
knowledge, there have been three flow-based models pro-
posed for molecular graph generation. The GraphAF (Shi
et al., 2020) model is an autoregressive flow-based model
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that achieves the state-of-the-art performance in molecule
generation. GraphAF generates molecules in a sequential
manner with validity check when adding a new atom or
bond. GraphNVP (Madhawa et al., 2019) and GRF (Honda
et al., 2019) are proposed for molecular graph generation in
a one-shot manner. However, they cannot guarantee chemi-
cal validity and thus show poor performance in generating
valid and novel molecules.

In this paper, we propose a novel model named MoFlow
for molecular graph generation. MoFlow is first of its kind
which not only generates molecules efficiently by invertible
mapping at one shot, but also has a validity guarantee. More
specifically, to capture the intrinsic atom-and-bond compo-
sition of molecules, we propose a variant of the Glow model
(Kingma & Dhariwal, 2018) for bonds generation, a novel
graph conditional flow for generating atoms given bonds.
Then the atoms and bonds are combined into a molecular
graph with post-hoc validity correction. MoFlow is trained
by exact and tractable likelihood estimation, and one-pass
inference and generation can be efficiently utilized for drug
optimization by the pre-trained MoFlow.

We validate MoFlow through a wide range of experiments
from molecular generation, reconstruction, visualization
to optimization. As baselines, we compare the state-of-
the-art VAE-based model (Jin et al., 2018), autoregressive-
based models (You et al., 2018; Popova et al., 2019), and
all three flow-based models (Madhawa et al., 2019; Honda
et al., 2019; Shi et al., 2020). As for memorizing input
data, MoFlow achieves 100% reconstruction rate. As for
exploring the unknown chemical space, MoFlow outper-
forms above models by generating more novel, unique and
valid molecules (as demonstrated by the N.U.V. scores in
Table 2 and 3). MoFlow generates 100% chemically-valid
molecules when sampling from prior distributions. Further-
more, if without validity correction, MoFlow still generates
much more valid molecules than existing models (validity-
without-check scores in Table 2 and 3). For example, the
state-of-the-art autoregressive-flow-based model GraphAF
(Shi et al., 2020) achieves 67% and 68% validity-without-
check scores for two datasets while MoFlow achieves 96%
and 82% respectively, thanks to its capability of capturing
the chemical structures in a holistic way. As for chemical
property optimization, MoFlow can find much more novel
molecules with top drug-likeness scores than existing mod-
els (Table 4 and Figure 5). As for constrained property
optimization, MoFlow finds novel and optimized molecules
with the best similarity scores and second best property
improvement (Table 5).

It is worthwhile to highlight our contributions as follows:

• Novel MoFlow model: MoFlow is one of the first
flow-based models which not only generates molecular
graphs at one shot by invertible mapping but also has a

validity guarantee. To capture the intrinsic atom-and-
bond composition of molecules, we propose a novel
graph conditional flow for atoms and a variant of Glow
model for bonds, and then combine them with post-hoc
validity correction.
• The state-of-the-art performance: MoFlow achieves

many state-of-the-art results w.r.t. molecular genera-
tion, reconstruction, optimization, etc., and at the same
time our one-shot inference and generation are very ef-
ficient, which implies its potentials in deep exploration
of the large chemical space for drug discovery.

The outline of this paper is: survey (Sec. 2), proposed
method (Sec. 3 and 4), experiments (Sec. 5), and conclu-
sions (Sec. 6).

2. Related Work
Molecular Generation. Different deep generative frame-
works are proposed for generating molecular SMILES or
molecular graphs. Among the variational autoencoder
(VAE)-based models (Kusner et al., 2017; Dai et al., 2018;
Simonovsky & Komodakis, 2018; Ma et al., 2018; Liu et al.,
2018; Bresson & Laurent, 2019; Jin et al., 2018), the JT-VAE
(Jin et al., 2018) generates valid tree-structured molecules
by first generating a tree-structured scaffold of chemical
substructures and then assembling substructures according
to the generated scaffold. The MolGAN (De Cao & Kipf,
2018) is a generative adversarial networks (GAN)-based
model but shows very limited performance in generating
valid and unique molecules. The autoregressive-based mod-
els generate molecules in a sequential manner with validity
check at each generation step. For example, the Molecu-
larRNN (Popova et al., 2019) sequentially generates each
character of SMILES and the GCPN (You et al., 2018) se-
quentially generates each atom/bond in a molecular graphs.
In this paper, we explore a different deep generative frame-
work, namely the normalizing flow models (Dinh et al.,
2014; Madhawa et al., 2019; Kingma & Dhariwal, 2018),
for molecular graph generation, which have the potential to
memorize and reconstruct all the training data and general-
ize to generating more valid, novel and unique molecules.

Flow-based Models. The (normalizing) flow-based models
try to learn mappings between complex distributions and
simple prior distributions through invertible neural networks
and such a framework has good merits of exact and tractable
likelihood estimation for training, efficient one-pass infer-
ence and sampling, invertible mapping and thus reconstruct-
ing all the training data etc. Examples include NICE(Dinh
et al., 2014), RealNVP(Dinh et al., 2016), Glow(Kingma
& Dhariwal, 2018) and GNF (Liu et al., 2019) which show
promising results in generating images or even graphs (Liu
et al., 2019). See latest reviews in (Papamakarios et al.,
2019; Kobyzev et al., 2019) and more technical details in
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Section 3.

To our best knowledge, there are three flow-based mod-
els for molecular graph generation. The GraphAF (Shi
et al., 2020) is an autoregressive flow-based model which
achieves the state-of-the-art performance in molecule gen-
eration. The GraphAF generates molecules in a sequential
manner with validity check when adding a new atom or
bond. The GraphNVP (Madhawa et al., 2019) and GRF
(Honda et al., 2019) are proposed for molecule generation
in a one-shot manner. However, they have no guarantee for
chemical validity and thus show very limited performance in
generating valid and novel molecules. Our MoFlow is first
of its kind which not only generates molecules efficiently by
invertible mapping at one shot but also has a validity guaran-
tee. In order to capture the atom-and-bond composition of
molecules, we propose a variant of Glow(Kingma & Dhari-
wal, 2018) model for bonds and a novel graph conditional
flow for atoms given bonds, and then combining them with
a post-hoc validity correction. Our MoFlow achieves many
new state-of-the-art results thanks to capturing the chemical
structures in a holistic way, and our one-shot inference and
generation are more efficient than sequential ones.

3. Model Preliminary
The flow framework. The flow-based models aim to learn
a sequence of invertible transformations fΘ = fL ◦ ... ◦ f1

between complex high-dimensional data X ∼ PX (X) and
Z ∼ PZ(Z) in a latent space with the same number of
dimensions where the latent distribution PZ(Z) is easy to
model (e.g., strong independence assumptions hold in such
a latent space). The potentially complex data in the original
space can be modelled by the change of variable formula
where Z = fΘ(X) and:

PX (X) = PZ(Z) | det(
∂Z

∂X
) | . (1)

To sample X̃ ∼ PX (X) is achieved by sampling Z̃ ∼
PZ(Z) and then to transform X̃ = f−1

Θ (Z̃) by the reverse
mapping of fΘ.

Let Z = fΘ(X) = fL ◦ ... ◦ f1(X), Hl = fl(Hl−1) where
fl (l = 1, ...L ∈ N+) are invertible mappings, H0 = X ,
HL = Z and PZ(Z) follows a standard isotropic Gaus-
sian with independent dimensions. Then we get the log-
likelihood of X by the change of variable formula as fol-
lows:

logPX (X) = logPZ(Z) + log | det( ∂Z
∂X

) |

=
∑
i

logPZi(Zi) +

L∑
l=1

log | det( ∂fl
∂Hl−1

) |
(2)

where PZi(Zi) is the probability of the ith dimension of Z
and fΘ = fL ◦ ... ◦ f1 is an invertible deep neural network

to be learnt. Thus, the exact-likelihood-based training is
tractable.

Invertible affine coupling layers. However, how to design
a.) an invertible function fΘ with b.) expressive structures
and c.) efficient computation of the Jacobian determinant
are nontrivial. The NICE(Dinh et al., 2014) and RealNVP
(Dinh et al., 2016) design an affine coupling transformation
Z = fΘ(X) : Rn 7→ Rn:

Z1:d = X1:d

Zd+1:n = Xd+1:n � eSΘ(X1:d) + TΘ(X1:d),
(3)

by splitting X into two partitions X = (X1:d, Xd+1:n).
Thus, a.) the invertibility is guaranteed by:

X1:d = Z1:d

Xd+1:n = (Zd+1:n − TΘ(Z1:d))/e
SΘ(Z1:d),

(4)

b.) the expressive power depends on arbitrary neural struc-
tures of the Scale function SΘ : Rd 7→ Rn−d and the Trans-
formation function TΘ : Rd 7→ Rn−d in the affine transfor-
mation of Xd+1:n, and c.) the Jacobian determiant can be
computed efficiently by det( ∂Z∂X ) = exp (

∑
j SΘ(X1:d)j).

Splitting Dimensions. The flow-based models, e.g., Real-
NVP (Dinh et al., 2016) and Glow (Kingma & Dhariwal,
2018), adopt squeeze operation which compresses the spa-
tial dimension Xc×n×n into X(ch2)×n

h×
n
h to make more

channels and then split channels into two halves for the cou-
pling layer. A deep flow model at a specific layer transforms
unchanged dimensions in the previous layer to keep all the
dimensions transformed. In order to learn an optimal parti-
tion of X , Glow (Kingma & Dhariwal, 2018) model intro-
duces an invertible 1×1 convolution : Rc×n×n×Rc×c 7→
Rc×n×n with learnable convolution kernel W ∈ Rc×c

which is initialized as a random rotation matrix. After the
transformation Y = invertible 1× 1 convolution(X,W ), a
fixed partition Y = (Y1: c2 ,:,:

, Y c
2 +1:n,:,:) over the channel c

is used for the affine coupling layers.

Numerical stability by actnorm. In order to ensure the nu-
merical stability of the flow-based models, actnorm layer
is introduced in Glow (Kingma & Dhariwal, 2018) which
normalizes dimensions in each channel over a batch by an
affine transformation with learnable scale and bias. The
scale and the bias are initialized as the mean and the inverse
of the standard variation of the dimensions in each channel
over the batch.

4. Proposed MoFlow Model
In this section, we first define the problem and then intro-
duce our Molecular Flow (MoFlow) model in detail. We
show the outline of our MoFlow in Figure 1 as a roadmap
for this section.
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Figure 1. The outline of our MoFlow. A molecule M (e.g. Met-
formin) is represented by a feature matrix A for atoms and adja-
cency tensors B for bonds. Inference: the graph conditional flow
(GCF) fA|B for atoms (Sec. 4.2) transforms A given B into con-
ditional latent vector ZA|B , and the Glow fB for bonds (Sec. 4.3)
transform B into latent vector ZB . The latent space follows a
spherical Gaussian distribution. Generation: the generation pro-
cess is just the reverse transformations of previous operations, fol-
lowed by a validity correction (Sec. 4.4) procedure which guaran-
tees the chemical validity. We summarize our MoFlow in Sec. 4.5.

4.1. Problem Definition: Learning a Probability Model
of Molecular Graphs

Let M = A × B ⊂ Rn×k × Rc×n×n denote the set of
Molecules which is the Cartesian product of the Atom
set A with at most n ∈ N+ atoms belonging to k ∈ N+

atom types and the Bond set B with c ∈ N+ bond types.
A molecule M = (A,B) ∈ A × B is a pair of an atom
matrix A ∈ Rn×k and a bond tensor B ∈ Rc×n×n. We
use one-hot encoding for the empirical molecule data where
A(i, k) = 1 represents the atom i has atom type k, and
B(c, i, j) = B(c, j, i) = 1 represents a type c bond between
atom i and atom j. Thus, a molecule M can be viewed as
an undirected graph with multi-type nodes and multi-type
edges.

Our primary goal is to learn a molecule generative model
PM(M) which is the probability of sampling any molecule
M from PM. In order to capture the intrinsic atom-and-
bond composition of molecules, we decompose the PM(M)
into two parts:

PM(M) = PM((A,B)) ≈ PA|B(A|B; θA|B)PB(B; θB) (5)

where PM is the distribution of molecule, PB is the distri-
bution of bonds, and PA|B is the conditional distribution
of atoms given the bonds. The θB and θA|B are learnable
modelling parameters. In contrast with VAE or GAN based
frameworks, we can learn the parameters by exact maximum
likelihood estimation (MLE) framework by maximizing:

argmax
θB,θA|B

EM=(A,B)∼pM−data
[logPA|B(A|B; θA|B)+logPB(B; θB)]

(6)

Our model thus consists of two parts, namely a graph condi-
tional flow for atoms to learn the atom matrix conditional on
the bond tensors and a flow for bonds to learn bond tensors.

4.2. Graph Conditional Flow for Atoms

Given a bond tensor B ∈ B ⊂ Rc×n×n, our goal of the
atom flow is to generate the right atom-type matrix A ∈
A ⊂ Rn×k to assemble valid molecules M = (A,B) ∈
M ⊂ Rn×k+c×n×n. We first define B-conditional flow
and graph conditional flow fA|B to transform A given B
into conditional latent variable ZA|B = fA|B(A|B) which
follows isotropic Gaussian PZA|B . We can get the condi-
tional probability of atom features given the bond graphs
PA|B by a conditional version of the change of variable
formula.

4.2.1. B-CONDITIONAL FLOW AND GRAPH
CONDITIONAL FLOW

Definition 4.1. B-conditional flow: A B-conditional flow
ZA|B |B = fA|B(A|B) is an invertible and dimension-
kept mapping and there exists reverse transformation
f−1
A|B(ZA|B |B) = A|B where fA|B and f−1

A|B : A × B 7→
A× B.

The condition B ∈ B keeps fixed during the transformation.
Under the independent assumption ofA and B, the Jacobian
of fA|B is:

∂fA|B
∂(A,B)

=

[
∂fA|B
∂A

∂fA|B
∂B

0 1B

]
, (7)

the determiant of this Jacobian is det ∂fA|B
∂(A,B) = det

∂fA|B
∂A ,

and thus the conditional version of the change of variable
formula in the form of log-likelihood is:

logPA|B(A|B) = logPZA|B (ZA|B) + log | det
∂fA|B
∂A

| .
(8)

Definition 4.2. Graph conditional flow: A graph condi-
tional flow is a B-conditional flow ZA|B |B = fA|B(A|B)
where B ∈ B ⊂ Rc×n×n is the adjacency tenor for edges
with c types and A ∈ A ⊂ Rn×k is the feature matrix of the
corresponding n nodes.

4.2.2. GRAPH COUPLING LAYER

We construct aforementioned invertible mapping fA|B and
f−1
A|B by the scheme of the affine coupling layer. Different

from traditional affine coupling layer, our coupling transfor-
mation relies on graph convolution (Sun et al., 2019) and
thus we name such a coupling transformation as a graph
coupling layer.

For each graph coupling layer, we split inputA ∈ Rn×k into
two parts A = (A1, A2) along the n row dimension, and
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Figure 2. Graph conditional flow fA|B for the atom matrix. We
show the details of one invertible graph coupling layer and a mul-
tiscale structure consists of a cascade of L layers of such graph
coupling layer. The graphnorm is computed only once.

we get the output ZA|B = (ZA1|B , ZA2|B) = fA|B(A|B)
as follows:

ZA1|B = A1

ZA2|B = A2 � Sigmoid(SΘ(A1|B)) + TΘ(A1|B).
(9)

We deign the scale function SΘ and the transformation func-
tion TΘ in each graph coupling layer by incorporating graph
convolution structures. The bond tensor B ∈ Rc×n×n

keeps a fixed value during transforming the atom matrix
A. We also apply the masked convolution idea in (Dinh
et al., 2016) to the graph convolution in the graph coupling
layer. Here, we adopt Relational Graph Convolutional Net-
works (R-GCN) (Schlichtkrull et al., 2018) to build graph
convolution layer graphconv as follows:

graphconv(A1) =

c∑
i=1

B̂i(M �A)Wi + (M �A)W0 (10)

where B̂i = D−1Bi is the normalized adjacency matrix at
channel i, D =

∑
c,iBc,i,j is the sum of the in-degree over

all the channels for each node, and M ∈ {0, 1}n×k is a
binary mask to select a partition A1 from A. Because the
bond graph is fixed during graph coupling layer and thus the
graph normalization, denoted as graphnorm, is computed
only once.

We use multiple stacked graphconv-¿BatchNorm1d-¿ReLu
layers with a multi-layer perceptron (MLP) output layer to
build the graph scale function SΘ and the graph transforma-
tion function TΘ. What’s more, instead of using exponential
function for the SΘ as discussed in Sec. 3, we adopt Sigmoid
function for the sake of the numerical stability of cascading
multiple flow layers. The reverse mapping of the graph
coupling layer f−1

A|B is:

A1 = ZA1|B

A2 = (ZA2|B − TΘ(ZA1|B |B))/Sigmoid(SΘ(ZA1|B |B)).
(11)

The logarithm of the Jacobian determiant of each graph
coupling layer can be efficiently computed by:

log | det(
∂fA|B
∂A

) |=
∑
j

log Sigmoid(SΘ(A1|B))j . (12)

In principle, we can use arbitrary complex graph convolution
structures for SΘ and TΘ since the computing of above
Jacobian determinant of fA|B does not involve in computing
the Jacobian of SΘ or TΘ.

4.2.3. ACTNORM FOR 2-DIMENSIONAL MATRIX

For the sake of numerical stability, we design a variant
of invertible actnorm layer (Kingma & Dhariwal, 2018)
for the 2-dimensional atom matrix, denoted as actnorm2D
(activation normalization for 2D matrix), to normalize each
row, namely the feature dimension for each node, over a
batch of 2-dimensional atom matrices. Given the mean µ ∈
Rn×1 and the standard deviation σ2 ∈ Rn×1 for each row
dimension, the normalized input follows Â = A−µ√

σ2+ε
where

ε is a small constant, the reverse transformation is A =
Â ∗
√
σ2 + ε+ µ, and the logarithmic Jacobian determiant

is:

log | det ∂actnorm2D
∂X

|= k

2

n∑
i

| log(σ2
i + ε) | (13)

4.2.4. DEEP ARCHITECTURES

We summarize our deep graph conditional flow in Figure 2.
We stack multiple graph coupling layers to form graph condi-
tional flow. We alternate different partition ofA = (A1, A2)
in each layer to transform the unchanged part of the previous
layer.

4.3. Glow for Bonds

The bond flow aims to learn an invertible mapping fB : B ⊂
Rc×n×n 7→ B ⊂ Rc×n×n where the transformed latent vari-
able ZB = fB(B) follows isotropic Gaussian. According to
the change of variable formula, we can get the logarithmic
probability of bonds by logPB(B) = logPZB(ZB) + log |
det(∂fB∂B ) | and generating bond tensor by reversing the map-
ping B̃ = f−1

B (Z̃) where Z̃ ∼ PZ(Z). We can use arbitrary
flow model for the bond tensor and we build our bond flow
fB based on a variant of Glow (Kingma & Dhariwal, 2018)
framework.

We also follow the scheme of affine coupling layer to build
invertible mappings. For each affine coupling layer, We
split input B ∈ Rc×n×n into two parts B = (B1, B2)
along the channel c dimension, and we get the output
ZB = (ZB1

, ZB2
) as follows:

ZB1 = B1

ZB2 = B2 � Sigmoid(SΘ(B1)) + TΘ(B1).
(14)
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Figure 3. A variant of Glow fB for bonds’ adjacency tensors.
And thus the reverse mapping f−1

B is:

B1 = ZB1

B2 = (ZB2 − TΘ(ZB1))/Sigmoid(SΘ(ZB1)).
(15)

Instead of using exponential function as scale function, we
use the Sigmoid function with range (0, 1) to ensure the
numerical stability when stacking many layers. We find that
exponential scale function leads to a large reconstruction
error when the number of affine coupling layers increases.
The scale function SΘ and the transformation function TΘ

in each affine coupling layer can have arbitrary structures.
We use multiple 3× 3 conv2d-¿BatchNorm2d-¿ReLu layers
to build them. The logarithm of the Jacobian determiant of
each affine coupling is

log | det(∂ZB
∂B

) |=
∑
j

log Sigmoid(SΘ(B1))j . (16)

In order to learn optimal partition and ensure model’s sta-
bility and learning rate, we also use the invertible 1 × 1
convolution layer and actnorm layer adopted in the Glow.
In order to get more channels for masking and transfor-
mation, we squeeze the spatial size of B from Rc×n×n to
R(c∗h∗h)×n

h×
n
h by a factor h and apply the affine coupling

transformation to the squeezed data. The reverse unsqueeze
operation is adopted to the output. We summarize our bond
flow in Figure 3.

4.4. Validity Correction

Real molecules must follow the valency constraints for each
atom, but assembling a molecule from generated bond tensor
and atom matrix may lead to chemically invalid ones. Here
we define the valency constraint for the ith atom as:∑

c,j

c ∗B(c, i, j) ≤ Valency(Atomi) + Ch (17)

where B ∈ {0, 1}c×n×n is the one-hot bond tensor over
c ∈ {1, 2, 3} order of chemical bonds (single, double, triple)
and Ch ∈ N represents the formal charge. Different from
existing valency constraints defined in (You et al., 2018;

Popova et al., 2019), we consider the effect of formal charge
which may introduce extra bonds for the charged atoms.
For example, ammonium [NH4]+ may have 4 bonds for
N instead of 3. Similarly, S+ and O+ may have 3 bonds
instead of 2. Here we only consider Ch = 1 for N+, S+

and O+ and make Ch = 0 for other atoms.

In contrast with the existing reject-sampling-based valid-
ity check adopted in the autoregressive models (You et al.,
2018; Popova et al., 2019), we introduce a new post-hoc
validity correction procedure after generating a molecule
M at once: 1) check the valency constraints of M ; 2) if
all the atoms of M follows valecny constraints, we re-
turn the largest connected component of the molecule M
and end the procedure; 3) if there exists an invalid atom
i, namely

∑
c,j cB(c, i, j) > Valency(Atomi) + Ch, we

sort the bonds of i by their order and delete 1 order for the
bond with the largest order; 4) go to step 1). Our valid-
ity correction procedure tries to make a minimum change
to the existing molecule and to keep the largest connected
component as large as possible.

4.5. Inference and Generation

We summarize the inference and generation procedure of
our MoFlow in Algorithm 1 and Algorithm 2 respectively.
We visualize the overall framework in Figure 1. As shown in
the algorithms, our MoFlow have merits of exact likelihood
estimation/training, one-pass inference, invertible and one-
pass generation, and chemical validity guarantee.

Algorithm 1 Exact Likelihood Inference (Encoding) by
MoFlow
Input: fA|B: graph conditional flow for atoms, fB: glow for
bonds, A: atom matrix, B: bond tensor, PZ∗ : isotropic Gaussian
distributions.
Output: ZM :latent representation for atom M , logPM(M): log-
arithmic likelihood of molecule M .
ZB = fB(B)

logPB(B) = logPZB (ZB) + log | det( ∂fB
∂B

) |
B̂ = graphnorm(B)
ZA|B = fA|B(A|B̂)

logPA|B(A|B) = logPZA|B (ZA|B) + log | det( ∂fA|B
∂A

) |
ZM = (ZA|B , ZB)
logPM(M) = logPB(B) + logPA|B(A|B)
Return: ZM , logPM(M)

5. Experiments
Following previous works (Jin et al., 2018; Shi et al., 2020),
we validate our MoFlow by answering following questions:

• Molecule Generation and Reconstruction
(Sec. 5.1): Can our MoFlow memorize and re-
construct all the training molecule datasets? Can our
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Algorithm 2 Molecule Generation (Decoding) by the Re-
verse Transformation of MoFlow
Input: fA|B: graph conditional flow for atoms, fB: glow for
bonds, ZM :latent representation of molecule M or sampling from
a prior Gaussian, validity-correction: validity correction rules.
Output: M : a molecule
(ZA|B , ZB) = ZM
B = f−1

B (ZB)

B̂ = graphnorm(B)
A = f−1

A|B(ZA|B |B̂)

M = validity-correction(A,B)
Return: M

MoFlow generalize to generate novel, unique and valid
molecules as many as possible?

• Visualizing Continuous Latent Space (Sec. 5.2):
Can our MoFlow embed molecular graphs into contin-
uous latent space with reasonable chemical similarity?

• Property Optimization (Sec. 5.3): Can our MoFlow
generate novel molecules with optimized properties?

• Constrained Property Optimization (Sec. 5.4): Can
our MoFlow generate novel molecules with the opti-
mized properties and at the same time keep the chemi-
cal similarity as much as possible?

Baselines. We compare our MoFlow with: a) the state-of-
the-art VAE-based method JT-VAE (Jin et al., 2018) which
captures the chemical validity by encoding and decoding
a tree-structured scaffold of molecular graphs; b) the state-
of-the-art autoregressive models GCPN (You et al., 2018)
and MolecularRNN (MRNN)(Popova et al., 2019) with rein-
forcement learning for property optimization, which gener-
ate molecules in a sequential manner; c) flow-based methods
GraphNVP (Madhawa et al., 2019) and GRF (Honda et al.,
2019) which generate molecules at one shot and the state-
of-the-art autoregressive-flow-based model GraphAF (Shi
et al., 2020) which generates molecules in a sequential way.

Datasets. We use two datasets QM9 (Ramakrishnan et al.,
2014) and ZINC250K (Irwin et al., 2012) for our experi-
ments and summarize them in Table 1. The QM9 contains
133, 885 molecules with maximum 9 atoms in 4 different
types, and the ZINC250K has 249, 455 drug-like molecules
with maximum 38 atoms in 9 different types. The molecules
are kekulized by the chemical software RDKit (Landrum
et al., 2006) and the hydrogen atoms are removed. There
are three types of edges, namely single, double, and triple
bonds, for all molecules. Following the pre-processing pro-
cedure in (Madhawa et al., 2019), we encode each atom and
bond by one-hot encoding, pad the molecules which have
less than the maximum number of atoms with an virtual
atom, augment the adjacency tensor of each molecule by a
virtual edge channel representing no bonds between atoms,
and dequantize (Madhawa et al., 2019; Dinh et al., 2016) the

discrete one-hot-encoded data by adding uniform random
noise U [0, 0.6] for each dimension, leading to atom matrix
A ∈ R9×5 and bond tensor B ∈ R4×9×9 for QM9, and
A ∈ R38×10 and B ∈ R4×38×38 for ZINC250k.

Table 1. Statistics of the datasets.
#Mol.
Graphs

Max.
#Nodes

#Node
Types

#Edge
Types

QM9 133,885 9 4+1 3+1
ZINC250K 249,455 38 9+1 3+1

MoFlow Setup. To be comparable with one-shot-flow base-
line GraphNVP (Madhawa et al., 2019), for the ZINC250K,
we adopt 10 coupling layers and 38 graph coupling lay-
ers for the bonds’ Glow and the atoms’ graph conditional
flow respectively. We use two 3 ∗ 3 convolution layers with
512, 512 hidden dimensions in each coupling layer. For
each graph coupling layer, we set one relational graph con-
volution layer with 256 dimensions followed by a two-layer
multilayer perceptron with 512, 64 hidden dimensions. As
for the QM9, we adopt 10 coupling layers and 27 graph
coupling layers for the bonds’ Glow and the atoms’ graph
conditional flow respectively. There are two 3*3 convolution
layers with 128, 128 hidden dimensions in each coupling
layer, and one graph convolution layer with 64 dimensions
followed by a two-layer multilayer perceptron with 128, 64
hidden dimensions in each graph coupling layer. As for
the optimization experiments, we further train a regression
model to map the latent embeddings to different property
scalars (discussed in Sec. 5.3 and 5.4) by a multi-layer per-
ceptron with 18-dim linear layer -¿ ReLu -¿ 1-dim linear
layer structures. For each dataset, we use the same trained
model for all the following experiments.

Empirical Running Time. Following above setup, we im-
plemented our MoFlow by Pytorch-1.3.1 and trained it by
Adam optimizer (Kingma & Ba, 2014) with learning rate
0.001, batch size 256, and 200 epochs for both datasets
on 1 GeForce RTX 2080 Ti GPU and 16 CPU cores. Our
MoFlow finished 200-epoch training within 22 hours (6.6
minutes/epoch) for ZINC250K and 3.3 hours (0.99 min-
utes/epoch) for QM9. Thanks to efficient one-pass infer-
ence/embedding, our MoFlow takes negligible 7 minutes
to learn an additional regression layer trained in 3 epochs
for optimization experiments on ZINC250K. In compari-
son, as for the ZINC250K dataset, GraphNVP (Madhawa
et al., 2019) costs 38.4 hours (11.5 minutes/epoch) by our
Pytorch implementation for training on ZINC250K with
the same configurations, and the estimated total running
time of GraphAF (Shi et al., 2020) is 124 hours (24 min-
utes/epoch) which consists of the reported 4 hours for a
generation model trained by 10 epochs and estimated 120
hours for another optimization model trained by 300 epochs.
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The reported running time of JT-VAE (Jin et al., 2018) is
roughly 24 hours in (You et al., 2018).

5.1. Molecule Generation and Reconstruction

Setup. In this task, we evaluate our MoFlow ’s capabil-
ity of generating novel, unique and valid molecules, and
if our MoFlow can reconstruct input molecules from their
latent representations. We adopted the widely-used metrics,
including: Validity which is the percentage of chemically
valid molecules in all the generated molecules, Uniqueness
which is the percentage of unique valid molecules in all
the generated molecules, Novelty which is the percentage
of generated valid molecules which are not in the training
dataset, and Reconstruction rate which is the percentage of
molecules in the input dataset which can be reconstructed
from their latent representations. Besides, because the nov-
elty score also accounts for the potentially duplicated novel
molecules, we propose a new metric N.U.V. which is the
percentage of Novel, Unique, and Valid molecules in all the
generated molecules. We also compare the validity of abla-
tion models if not using validity check or validity correction,
denoted as Validity w/o check in (Shi et al., 2020).

The prior distribution of latent space follows a spherical
multivariate Gaussian distribution N (0, (tσ)

2
I) where σ is

the learned standard deviation and the hyper-parameter t
is the temperature for the reduced-temperature generative
model (Parmar et al., 2018; Kingma & Dhariwal, 2018;
Madhawa et al., 2019). We use t = 0.85 in the genera-
tion for both QM9 and ZINC250K datasets, and t = 0.6
for the ablation study without validity correction. To be
comparable with the state-of-the-art baseline GraphAF(Shi
et al., 2020), we generate 10, 000 molecules, i.e., sampling
10, 000 latent vectors from the prior and then decode them
by the reverse transformation of our MoFlow. We report the
the mean and standard deviation of results over 5 runs. As
for the reconstruction, we encode all the molecules from the
training dataset into latent vectors by the encoding transfor-
mation of our MoFlow and then reconstruct input molecules
from these latent vectors by the reverse transformation of
MoFlow.

Results. Table 2 and Table 3 show that our MoFlow outper-
foms the state-of-the-art models on all the six metrics for
both QM9 and ZINC250k datasets. Thanks to the invertible
characteristic of the flow-based models, our MoFlow builds
an one-to-one mapping from the input moleculeM to its cor-
responding latent vector Z, enabling 100% reconstruction
rate as shown in Table 2 and Table 3. In contrast, the VAE-
based method JT-VAE and the autoregressive-based method
GCPN and MRNN can’t reconstruct all the input molecules.
Compared with the one-shot flow-based model GraphNVP
and GRF, by incorporating validity correction mechanism,
our MoFlow achieves 100% validity, leading to significant

improvements of the validity score and N.U.V. score for both
datasets. Specifically, the N.U.V. score of MoFlow are 2 and
3 times as large as the N.U.V. scores of GraphNVP and GRF
respectively in Table 2. Even without validity correction, our
MoFlow still outperforms the validity scores of GraphNVP
and GRF by a large margin. Compared with the autore-
gressive flow-based model GraphAF, we find our MoFlow
outperforms GraphAF by additional 16% and 0.8% with
respect to N.U.V scores for QM9 and ZINC respectively, in-
dicating that our MoFlow generates more novel, unique and
valid molecules. Indeed, MoFlow achieves better unique-
ness score and novelty score compared with GraphAF for
both datasets. What’s more, our MoFlow without validity
correction still outperforms GraphAF without the validity
check by a large margin w.r.t. the validity score (validity w/o
check in Table 2 and Table 3) for both datasets, implying
the superiority of capturing the molecular structures in a
holistic way by our MoFlow over autoregressive ones in a
sequential way.

In conclusion, our MoFlow not only memorizes and recon-
structs all the training molecules, but also generates more
novel, unique and valid molecules than existing models,
indicating that our MoFlow learns a strict superset of the
training data and explores the unknown chemical space bet-
ter.

5.2. Visualizing Continuous Latent Space

Setup. We examine the learned latent space of our MoFlow
, denoted as f , by visualizing the decoded molecules
from a neighborhood of a latent vector in the latent space.
Similar to (Kusner et al., 2017; Jin et al., 2018), we en-
code a seed molecule M into Z = f(M) and then grid
search two random orthogonal directions with unit vector
X and Y based on Z, then we get new latent vector by
Z ′ = Z + λX ∗ X + λY ∗ Y where λX and λY are the
searching steps. Different from VAE-based models, our
MoFlow gets decoded molecules efficiently by the one-pass
inverse transformation M ′ = f−1(Z ′). In contrast, the
VAE-based models such as JT-VAE need to decode each
latent vectors 10−100 times and autoregressive-based mod-
els like GCPN, MRNN and GraphAF need to generate a
molecule sequentially. Further more, we measure the chem-
ical similarity between each neighboring molecule and the
centering molecule. We choose Tanimoto index (Bajusz
et al., 2015) as the chemical similarity metrics and indicate
their similarity values by a heatmap. We further visual-
ize a linear interpolation between two molecules to show
their changing trajectory in the latent space similar to the
interpolation case between images (Kingma & Dhariwal,
2018).

Results. We show the visualization of latent space in Fig-
ure 4. We find the latent space is very smooth and the inter-
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Table 2. Generation and reconstruction performance on QM9 dataset.
% Validity % Validity w/o check % Uniqueness % Novelty % N.U.V. % Reconstruct

GraphNVP (Madhawa et al., 2019) 83.1± 0.5 n/a 99.2± 0.3 58.2± 1.9 47.97 100
GRF (Honda et al., 2019) 84.5± 0.70 n/a 66.0± 1.15 58.6± 0.82 32.68 100
GraphAF (Shi et al., 2020) 100 67 94.51 88.83 83.95 100

MoFlow 100.00± 0.00 96.17± 0.18 99.20± 0.12 98.03± 0.14 97.24± 0.21 100.00± 0.00

Table 3. Generation and reconstruction performance on ZINC250K dataset.
% Validity % Validity w/o check % Uniqueness % Novelty % N.U.V. % Reconstruct

JT-VAE (Jin et al., 2018) 100 n/a 100 100 100 76.7
GCPN (You et al., 2018) 100 20 99.97 100 99.97 n/a
MRNN (Popova et al., 2019) 100 65 99.89 100 99.89 n/a
GraphNVP (Madhawa et al., 2019) 42.6± 1.6 n/a 94.8± 0.6 100 40.38 100
GRF (Honda et al., 2019) 73.4± 0.62 n/a 53.7± 2.13 100 39.42 100
GraphAF (Shi et al., 2020) 100 68 99.10 100 99.10 100

MoFlow 100.00± 0.00 81.76± 0.21 99.99± 0.01 100.00± 0.00 99.99± 0.01 100.00± 0.00
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Figure 4. Visualization of learned latent space by our MoFlow. Top: Visualization of the grid neighbors of a seed molecule in the center,
which serves as the baseline for measuring similarity. Bottom: Interpolation between two seed molecules and the left one is the baseline
molecule for measuring similarity. Seed molecules are highlighted in red boxs and they are randomly selected from ZINC250K.

polations between two latent points only change a molecule
graph a little bit. Quantitatively, we find the chemical sim-
ilarity between molecules majorly correspond to their Eu-

clidean distance between their latent vectors, implying that
our MoFlow embeds similar molecular structures into simi-
lar latent embeddings. Searching in such a continuous latent
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space learnt by our MoFlow is the basis for molecular prop-
erty optimization and constraint optimization as discussed
in the following sections.

5.3. Property Optimization

Setup. The property optimization task aims at generat-
ing novel molecules with the best Quantitative Estimate of
Druglikeness (QED) scores (Bickerton et al., 2012) which
measures the drug-likeness of generated molecules. Fol-
lowing the previous works (You et al., 2018; Popova et al.,
2019), we report the best property scores of novel molecules
discovered by each method.

We use the pre-trained MoFlow, denoted as f , in the genera-
tion experiment to encode a molecule M and get the molec-
ular embedding Z = f(M), and further train a multilayer
perceptron to regress the embedding Z of the molecules to
their property values y. We then search the best molecules
by the gradient ascend method, namely Z ′ = Z + λ ∗ dy

dZ
where the λ is the length of the search step. We conduct
above gradient ascend method by K steps. We decode
the new embedding Z ′ in the latent space to the discov-
ered molecule by reverse mapping M ′ = f−1(Z ′). The
molecule M ′ is novel if M ′ doesn’t exist in the training
dataset.

Table 4. Discovered novel molecules with the best QED scores.
Our MoFlow finds more molecules with the best QED scores.
More results in Figure 5.

Method 1st 2nd 3rd 4th

ZINC (Dataset) 0.948 0.948 0.948 0.948

JT-VAE 0.925 0.911 0.910 -
GCPN 0.948 0.947 0.946 -
MRNN 0.948 0.948 0.947 -
GraphAF 0.948 0.948 0.947 0.946

MoFlow 0.948 0.948 0.98 0.948
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Figure 5. Illustration of discovered novel molecules with the best
druglikeness QED scores.
Results. We report the discovered novel molecules sorted

Table 5. Constrained optimization on Penalized-logP
JT-VAE GCPN

δ Improvement Similarity Success Improvement Similarity Success

0.0 1.91± 2.04 0.28± 0.15 97.5% 4.20± 1.28 0.32± 0.12 100%
0.2 1.68± 1.85 0.33± 0.13 97.1% 4.12± 1.19 0.34± 0.11 100%
0.4 0.84± 1.45 0.51± 0.10 83.6% 2.49± 1.30 0.48± 0.08 100%
0.6 0.21± 0.71 0.69± 0.06 46.4% 0.79± 0.63 0.68± 0.08 100%

GraphAF MoFlow

δ Improvement Similarity Success Improvement Similarity Success

0.0 13.13± 6.89 0.29± 0.15 100% 8.61± 5.44 0.30± 0.20 98.88%
0.2 11.90± 6.86 0.33± 0.12 100% 7.06± 5.04 0.43± 0.20 96.75%
0.4 8.21± 6.51 0.49± 0.09 99.88% 4.71± 4.55 0.61± 0.18 85.75%
0.6 4.98± 6.49 0.66± 0.05 96.88% 2.10± 2.86 0.79± 0.14 58.25%

by their QED scores in Table 4. We find previous methods
can only find very few molecules with the best QED score
(= 0.948). In contrast, our MoFlow finds much more novel
molecules which have the best QED values than all the
baselines. We show more molecular structures with top
QED values in Figure 5.

5.4. Constrained Property Optimization

Setup. The constrained property optimization aims at find-
ing a new molecule M ′ with the largest similarity score
sim(M,M ′) and the largest improvement of a targeted
property value y(M ′) − y(M) given a molecule M . Fol-
lowing the similar experimental setup of (Jin et al., 2018;
You et al., 2018), we choose Tanimoto similarity of Morgan
fingerprint (Rogers & Hahn, 2010) as the similarity metrics,
the penalized logP (plogp) as the target property, and M
from the 800 molecules with the lowest plogp scores in
the training dataset of ZINC250K. We use similar gradient
ascend method as discussed in the previous subsetion to
search for optimized molecules. An optimization succeeds
if we find a novel molecule M ′ which is different from M
and y(M ′) − y(M) ≥ 0 and sim(M,M ′) ≥ δ within K
steps where δ is the smallest similarity threshold to screen
the optimized molecules.

Results. We summarize the results in Table 5. We find our
MoFlow can find the most similar new molecules at the
same time achieve very good plogp improvement. Com-
pared with the state-of-the-art VAE model JT-VAE, our
MoFlow achieves much higher similarity score and property
improvement, implying that our model is good at interpola-
tion and learning continuous molecular embedding. Com-
pared with the state-of-the-art reinforcement learning based
method GCPN and GraphAF which is good at generating
molecules step-by-step with targeted property rewards, our
model MoFlow achieves the best similarity scores and the
second best property improvements. We illustrate one opti-
mization example in Figure 6 with very similar structures
but a large improvement w.r.t the penalized logP.
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Figure 6. An illustration of the constrained optimization of a
molecule leading to an improvement of +16.48 w.r.t the penalized
logP and with Tanimoto similarity 0.624. The modified part is
highlighted.

6. Conclusion
In this paper, we propose a novel model named MoFlow
for molecular graph generation. Our MoFlow is one of the
first flow-based models which not only generates molecular
graphs at one-shot by invertible mappings but also has a
validity guarantee. Our MoFlow consists of a variant of
Glow model for bonds, a novel graph conditional flow for
atoms given bonds, and then combining them with post-
hoc validity correction. Our MoFlow achieves many new
state-of-the-art performance on molecular generation, re-
construction and optimization. For future work, we try to
combine the advantages of both sequential generative mod-
els and one-shot generative models to generate chemically
feasible molecular graphs.
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