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Abstract
We combine invertible neural networks with
RBMs to create a more tractable energy-based
model which retains the power of recent scalable
EBM variants while allowing for more efficient
sampling and likelihood evaluation. We further
find that replacing the Gaussian base distributions
typically used in normalizing flows with an RBM
leads to improved likelihood compared to a flow
with a similar architecture possibly providing a
pathway to more efficient, but still tractable gen-
erative models. We demonstrate the performance
of our approach on small image datasets and com-
pare to recent normalizing flows and EBMs.

1. Introduction
Restricted Botzmann Machines (RBMs) have had a long and
rich history in the generative modeling community (Smolen-
sky et al., 1986; Hinton, 2002; Hinton & Salakhutdinov,
2006). As a generative model they have many desirable
properties including compositional structure (Hinton, 2002;
Du & Mordatch, 2019) and the ability to be trained on unla-
beled data, or data with missing values. Although they are
unnormalized Energy-Based models, the structure of RBMs
emits a tractable blocked Gibbs sampler, which enables rel-
atively fast sampling and training, compared to other classes
of Energy-Based Models (EBMs). While standard RBMs
have been successful at modeling simple distributions, to
successfully model more complicated data such as images,
RBMs typically need to be stacked on top of each other to
create a Deep Belief Network (Hinton et al., 2006; Salakhut-
dinov & Hinton, 2009). This greatly increases the model’s
expressive power but sampling must now be done sequen-
tially, reducing the efficiency and increasing the bias of the
training objective.
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In recent years alternative classes of generative models have
become more popular such as Normalizing Flows (Rezende
& Mohamed, 2015; Deco & Brauer, 1995) and Variational
Autoencoders (Kingma & Welling, 2013; Rezende et al.,
2014). These models allow for more efficient sampling
and likelihood computation (or estimation) at the cost of
expressiveness. Despite this, considerable progress has been
made in these more tractable models causing RBMs to fall
out of favor.

In this work we propose a simple method to increase the
scalability of RBMs without having to rely on sequential
sampling. We train an RBM on top of a learned embedding
given by an invertible neural network similar to those used
to define Normalizing Flows (Kingma & Dhariwal, 2018;
Dinh et al., 2016). The entire model is trained end-to-end
to approximately maximize likelihood. We find that our
EBM-flow hybrid models (which we refer to as EB-and-
Flow) achieve better likelihoods than normalizing flows and
RBMs while being easier to sample from and evaluate than
recent EBM approaches.

2. Background
2.1. Energy-Based Models

An Energy-Based Model (EBM) is a model which represents
a probability distribution as

p(x) =
e−E(x)

Z
, (1)

where E is known as the energy function which maps the
data to a scalar value and Z is the normalizing constant.
The normalizing constant is implicitly defined by the energy
function as Z =

∫
e−E(x)dx so it is not modeled. This

makes training and sampling challenging but gives great
flexibility to the model.

2.2. Restricted Boltzmann Machines

An RBM is an EBM which defines a distribution over visible
units v and hidden units h defined as

p(v) =
∑
h

p(v, h) =
∑
h

e−E(v,h)

Z
. (2)
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The visible or hidden units can be discrete or continuous.
In this work we focus on Gaussian-Bernoulli RBMs (Cho
et al., 2013) which have continuous v and discrete h. The
energy function for this model is defined as

E(v, h) =
||v − bv||2

2σ2
v

+ h>bh + h>W
v

σv
, (3)

with parameters {W, bv, σv, bh}. While the joint distribu-
tion p(v, h) is unnormalized, the conditional distributions
are not

p(v|h) = N (v|bv + σvhW
>, σ2

v), (4)

p(h|v) = Bernoulli
(
h|sigmoid

(
v

σv
W + bh

))
, (5)

allowing for an efficient blocked Gibbs sampler to be used
to draw samples from p(v, h).

We can also analytically sum out the hidden variables to
produce an EBM for the marginal distribution of visible
units with energy:

E(v) =
‖v − bv‖2

2σ2
− softplus

(
W>v/σ + bh

)>
1.

RBMs are trained with gradient decent by estimating

∇θ log p(v) = −∇θE(v) + Ep(v)[∇θE(v)], (6)

where ∇θE(v) can be easily computed. The samples in
the expectation come from a Gibbs chain by repeated sam-
pling from Equations 4 and 5. The chain can be seeded
from data samples, giving the Contrastive Divergence (CD)
algorithm (Hinton, 2002). Recent work has also proposed
starting the chain from random noise (Nijkamp et al., 2019b).
A persistent chain can be used (Tieleman, 2008; Du & Mor-
datch, 2019; Grathwohl et al., 2019) for a lower-bias esti-
mate which we use in this work.

2.3. Normalizing Flows

A Normalizing Flow (NF) is a generative model for data
which works by drawing a sample z ∼ p(z) where p(z) is
an easily sampled distribution with a closed form density,
referred to as the base distribution. This sample z is then
passed through a function f−1 to give us our data x =
f−1(z). When f is bijective, then we can compute log p(x)
as

log p(x) = log p(f(x)) + log

∣∣∣∣det
∂f(x)

∂x

∣∣∣∣ . (7)

Most progress in NF research focuses on designing maxi-
mally expressive invertible architectures with efficient Jaco-
bian log determinant computation (Rezende & Mohamed,
2015; Dinh et al., 2014; 2016; Kingma & Dhariwal, 2018;
Grathwohl et al., 2018; Behrmann et al., 2018; Chen et al.,
2019).

2.4. Issues with EBMs

While EBMs have shown many advantages over tractable
likelihood models and are becoming one of the premier ap-
proaches to generative modeling (Du & Mordatch, 2019;
Grathwohl et al., 2019; Nijkamp et al., 2019b; Song & Er-
mon, 2019), they have limitations that make them challeng-
ing to work with. The energy-based parameterization is
very flexible, but sampling and likelihood evaluation require
Markov Chain Monte Carlo (MCMC) techniques. Given
the unconstrained nature of the energy functions in these
recent models, the gradient-based samplers typically used
have difficulty mixing (Nijkamp et al., 2019a) making like-
lihood evaluation a futile task (Du & Mordatch, 2019). This
is particularly problematic because samples and likelihood
are the current standard for evaluating generative models,
making it unclear how these recent EBMs compare with
other classes of generative models. For this reason, it would
be desirable to train a model which retains the flexibility of
EBMs while enabling a tractable way to accomplish both of
these tasks.

3. Related Work
Base Distributions for Flows. Typically a Gaussian base
density is used for NF models which imposes topologi-
cal constraints on the data distributions that can be mod-
eled (Falorsi et al., 2018). Recently, some alternatives have
been explored. Izmailov et al. (2019) train NF models with
a Gaussian Mixture base distribution for semi-supervised
learning. This leads to strong performance at this task, but
the parameters of the base distribution could not be learned
online with the flow model. Autoregressive base distribu-
tions have also been shown to improve sample quality as
well as likelihoods (Mahajan et al., 2020) at the cost of
slower sampling and added model complexity. On MNIST,
our approach provides a larger benefit.

Unstructured EBMs. EBMs impose very few constraints
on model architecture. Recently, energy functions based on
unstructured neural networks have achieved impressive per-
formance in terms of sample quality as well as downstream
discriminative tasks (Du & Mordatch, 2019; Grathwohl
et al., 2019; Song & Ou, 2018). Training these models re-
quires sampling using MCMC from the model distribution,
which is notoriously difficult for unstructured energy func-
tions, leading to costly and unstable optimization. These
difficulties can partially be side-stepped by training with
alternative objectives such as Score Matching (Song & Er-
mon, 2019; Li et al., 2019) or objectives based on Stein
Discrepancies (Grathwohl et al., 2020) – the latter also pro-
viding a compelling method for model evaluation. However,
despite this progress, reliably training large-scale EBMs and
evaluating their likelihoods is still an open problem.
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4. The Best of Both Worlds
We define a new model for data x. We first sample v from
a Gaussian-Bernoulli RBM p(v) =

∑
h p(v, h). We then

pass v through an invertible neural network with tractable
Jacobian log-determinant, f−1θ , defining a model:

p(x) =
∑
h

p(x, h) =
∑
h

p(v, h)

∣∣∣∣det
∂fθ(x)

∂x

∣∣∣∣ , (8)

where v = fθ(x). Overall, this gives

log p(x) =− ‖v − bv‖
2

2σ2
+ softplus

(
W>v/σ + bh

)>
1

+ log

∣∣∣∣det
∂fθ(x)

∂x

∣∣∣∣− logZ.

With respect to θ, we can easily optimize log p(x) since
the gradients with respect to θ do not depend on logZ.
With respect to the RBM parameters φ = {W, bh, bv}, we
estimate ∇φ log p(x) using Persistent Contrastive Diver-
gence (PCD) (Hinton, 2002; Tieleman, 2008) using a replay
buffer (Du & Mordatch, 2019; Grathwohl et al., 2019).

Each step of PCD learning requires only 2 matrix multi-
plies. Assuming fθ is a large neural network, then PCD
with 20 sampling steps per training training iteration adds
negligible computational overhead compared to training a
NF model with a Gaussian base distribution. Pseudocode
for our training procedure can be found in Algorithm 1.

Algorithm 1 EB-and-Flow Training
Require: Invertible net fθ, RBM pφ(v, h), replay buffer B,

number of MCMC steps n
for x in training data do

Compute v = fθ(x)
Compute g = ∇v log pφ(v)
Update θ with

∇θ log p(v) = g>∇θfθ(x) +∇θ log |∇xfθ(x)|
Sample v′ ∼ B, remove from B
v̂ = MCMC sample for n steps from v′

Update φ with∇φE(v)− Ev̂[∇φE(v̂)]
Add v̂ to B

end for

5. Model Structure
When training normalizing flows, the invertible model is
a mapping f : Rd → Rd. Traditionally, variables are
“factored out” as transformations are added. This means we
apply one invertible mapping f1 to get v′1 = f1(x). We then
split the features of v′1 into two groups v1, v+1 , We then apply
our second transformation to v+1 giving v′2 which is split
into v2, v+2 , and v+2 is passed to the next transformation, and

so on. This gives us L separate outputs v1, . . . , vL where L
is the number of times the variables are factored out.

When D is small, we can simply concatenate all vi to-
gether into one vector v and use an RBM on top to define
p(v, h). Alternatively we can give each vi its own indepen-
dent RBM, which defines the overall product distribution
p(v1, h1) · · · p(vL, hL). Under this model each vi is inde-
pendent of all v\i.

If vi is spatially structured (as it would be using a convolu-
tional model) we can define p(v′, hi) with a convolutional
RBM (Lee et al., 2009). We use traditional RBMs for our
MNIST and Fashion MNIST experiments and use convolu-
tional RBMs for our CIFAR10 experiments. Specifically,
we use convolutional RBMs which share a spatially struc-
tured hidden state. Full details of this RBM architecture are
found in Appendix B.

5.1. Conditional Versions

To incorporate side information, we may include additional
visible units to the Gaussian-Bernoulli RBM component of
the EB-and-Flow model following (Larochelle & Bengio,
2008). For instance, given an image x and one-hot label y,
the log-likelihood can be defined as

log p(x, y) =− ‖v − bv‖
2

2σ2
+ y>by

+ softplus
(
W>v/σ + V >y + bh

)>
1

+ log

∣∣∣∣det
∂fθ(x)

∂x

∣∣∣∣− logZ,

where V is a weight matrix and by is the bias for the labels.
The contrastive divergence learning algorithm can still be
used to approximately maximize this log-likelihood, since
efficient blocked Gibbs sampling is available (Larochelle &
Bengio, 2008).

Given both a labeled set Dl and unlabeled set Du, we may
optimize the following joint objective∑

x∈Du

log
∑
y

p(x, y) + λ
∑

(x,y)∈Dl

log p(x, y). (9)

We leave the investigation of this model as future work.

6. Experiments
We run a number of experiments to demonstrate the per-
formance of our approach. We train EB-and-Flow models
using the invertible network architectures from NICE (Dinh
et al., 2014) and Glow (Kingma & Dhariwal, 2018). We
first explore how our approach compares with other EBMs
on sampling and likelihood evaluation. Next we explore
likelihood computed on held-out test data and compare our
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approach with standard RBMs and NF models. On each of
these tasks we find our model performs favorably. Full de-
tails of model architectures, baselines, and hyperparameters
can be found in Appendix A.

6.1. Likelihood Evaluation

We evaluate our models by finding an upper-bound on like-
lihood using Annealed Importance Sampling (AIS) (Neal,
2001) and a lower-bound using RAISE (Burda et al., 2015).
These methods run MCMC chains which slowly anneal
from a tractable distribution to our model’s distribution. For
recent EBM models, many chains must be run (over 300,000
was used in Du & Mordatch (2019) and still the bounds are
very loose). We find that EB-and-Flow models are much
easier to evaluate. As seen in Table 1, we can arrive at
bounds within .001 bit/dim (bit/dim is typically reported
up to 2 decimal places) using 1000 steps meaning that EB-
and-Flow models can be reliably compared with tractable
likelihood models like NFs and VAEs.

Model Low-Bound Up-Bound # Iterations
EBM 3.92 4.45 300k

EB-and-Flow 1.0060 1.0061 1k

Table 1. Likelihood evaluation results on MNIST.

6.2. Sampling

We compare the ease of sampling from our model with
a standard RBM trained on MNIST, FashionMNIST, and
CIFAR10. As can be seen in Figure 1 we observe much
faster mixing, higher quality, and more diverse samples. We
can see our chain quickly mixes between the various modes
of the data distribution producing a varied set of samples
relatively quickly.

6.3. Likelihood Evaluation

We compare EB-and-Flow Models with standard NFs,
RBMs, and Flows with autoregressive base distribu-
tions (Mahajan et al., 2020) on the MNIST, Fashion
MNIST (Xiao et al., 2017), and CIFAR10 (Krizhevsky
et al., 2009) datasets. As seen in Table 2, across various
architectures on MNIST and Fashion MNIST we find that
EB-and-Flow outperforms the baselines in terms of test set
log-likelihood. We see that we are able to obtain competitive
results on CIFAR10 but do not outperform the state-of-the-
art or flows with standard Gaussian base distributions. We
believe this has to do with difficulties training our latent
RBM on higher-dimensional data. Izmailov et al. (2019)
also experienced these difficulties leading them to fix the
base distribution throughout training and refine it post-hoc.
We expect this performance gap could be closed in this way
or by using improved RBM training techniques (Qiu et al.,

Figure 1. Consecutive Gibbs samples from a markov chain that has
been burned in for 1000 iterations. Top: Standard RBM. Bottom:
EB-and-Flow. Top left: MNIST. Bottom left: Fashion MNIST.
Right: CIFAR10.

2020). We leave this for further work.

MNIST Fashion Cifar10

NF 1.87/1.05 4.05/2.96 3.35
NICE/Glow NICE/Glow Glow

EB-and-Flow 1.80/1.01 4.03/2.90 3.36
NICE/Glow NICE/Glow Glow

Flow+AR 1.03 N/A 3.31
Glow Glow Glow

RBM 2.11 4.55 5.47

Table 2. Unconditional Density Estimation. All CIFAR10 models
use the Glow architecture.

7. Conclusion
In this work we have presented a new type of EBM that
retains the flexibility and desirable properties of previous
EBM approaches while addressing several key issues of
these prior methods; namely sampling and evaluation. By
leveraging invertible neural networks we have created a
more tractable EBM which outperforms a flow-based base-
line with the same architecture, indicating that the additional
flexibility provided by the RBM improves modeling perfor-
mance. We are excited about the potential of our approach
to make invertible models more efficient by allowing them
to use smaller networks and by the potential of scaling our
approach up to tackle more challenging datasets.
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A. Experimental Details
A.1. Architectures

The NICE architectures used were exactly as in Dinh et al.
(2014). For MNIST and Fashion MNIST the Glow models
we used have two levels of features. Each level consists
of 8 affine-coupling blocks with 1x1 convolutions and the
hidden dimension of the couple blocks was 512. For CI-
FAR10 we use 3 levels of features and 16 blocks per level.
Our CIFAR10 models used convolutional RBMs with 100
hidden channels. We detail this RBM structure in Appendix
B.

For the MNIST and Fashion MNIST we use a single fully-
connected RBM whose input is a concatenation of the fea-
tures from the invertible network. These RBMs had 512
hidden units. The baseline RBMs also have 512 hidden
units.

A.2. Training

MNIST and Fashion MNIST models and baselines were
trained for 250 epochs using a batch size of 128. CIFAR10
models were trained for 500 epochs with the same batch
size. We use the Adam (Kingma & Ba, 2014) optimizer
with default hyperparameters and learning rate .001.

We use PCD with a replay buffer to train our RBMs. We
use a replay buffer of size 10000 and use 25 steps of Gibbs
sampling to update the particles at each training iteration.

B. Shared Convolutional RBMs
For high dimensional data, the invertible networks used to
specify normalizing flow will typically “factor out” groups
of features as they apply more invertible transformations.
This leaves us with f(x) = (v1, . . . , vL). When convolu-
tional models are used, each vi is spatially structured with
its on height, width, and depth. We could unwrap these into
vectors, concatenate them together to v and build a fully
connected RBM on top of them. This gives the following
joint energy function:

E(v, h) =
||v − bv||2

2σ2
v

+ h>bh + h>W
v

σv
. (10)

Alternatively, we can treat them all separately and given
each of them their own weight matrix, leading to the identi-
cal energy function:

E(v, h) =
||v − bv||2

2σ2
v

+ h>bh +
L∑
i=1

h>Wi
vi
σv
. (11)

For fully connected RBMs this interpretation is pointless,
but it is not when dealing with convolutional RBMs. A

https://openreview.net/forum?id=r1eyceSYPr
https://openreview.net/forum?id=r1eyceSYPr
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convolutional RBM replaces the weight matrix W with a
filter Ω and defines the energy function:

E(v, h) =
||v − bv||2

2σ2
v

+ h>bh + h>
(

Ω ∗ v

σv

)
. (12)

When the input v is split into L spatially structured vi each
with their own height, width, and channels, we can define a
new energy function which uses L separate filters to define
an RBM with a single hidden tensor state:

E(v, h) =
||v − bv||2

2σ2
v

+ h>bh +

L∑
i=1

h>
(

Ωi ∗
vi
σv

)
(13)

where each Ωi has the same number of output filters, and
the kernel size and/or stride is chosen to make sure that the
width and height of Ωi ∗ vi is identical. For example, the
invertible network for our CIFAR10 model outputs 3 v′is
with height and width equal to (16, 16), (8, 8), (4, 4). Thus
Ω1 has a 5x5 kernel and stride 4, Ω2 has a 3x3 kernel and
stride 2, and Ω3 has a 3x3 kernel and stride 1. Each kernel
has 100 filters leading h to have size (4, 4, 100). This can
be seen pictorially in Figure 2.

Figure 2. Visualization of our shared convolutional RBM struc-
ture. The image is mapped to spatially structured v1, v2, v3 by the
invertible neural network fθ . Each vi is then convolved with a
distinct filter Ωi which maps to the shared hidden state h.


