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Abstract
In this contribution, we propose a new compu-
tationally efficient method MetFlow to combine
Variational Inference (VI) with MCMC. In this
approach, the standard mean-field variational dis-
tribution is enriched with MCMC transitions with
proposals obtained using Normalizing Flows. The
marginal distribution produced by such algorithm
is a mixture of flow-based distributions, thus dras-
tically increasing the expressivity of the varia-
tional family. Extensive numerical experiments
show clear computational and performance im-
provements over state-of-the-art methods.

1. Introduction
One of the biggest computational challenge these days in
machine learning and computational statistics is to sam-
ple from a complex distribution known up to a multiplica-
tive constant. Indeed, this problem naturally appears in
Bayesian inference (Robert, 2007) or for generative mod-
els like Variational AutoEncoders (VAE) or energy-based
models (Kingma & Welling, 2013). Popular methods to ad-
dress this problem are Markov Chain Monte Carlo (MCMC)
algorithms (Brooks et al., 2011) and Variational Inference
(VI) (Wainwright et al., 2008; Blei, 2017).

Starting from a parameterized family of distributions Q =
{qφ : φ ∈ Φ ⊂ Rq}, VI approximates the intractable distri-
bution with density π on RD by maximizing the evidence
lower bound (ELBO) defined by

L(φ) =

∫
log
(
π̃(z)/qφ(z)

)
qφ(z)dz , (1)

using an unnormalized version π̃ of π, i.e. π = π̃/Cπ setting
Cπ =

∫
RD π̃(z)dz. Indeed, this approach consists in mini-

mizing φ 7→ KL(qφ|π) since L(φ) = log(Cπ)−KL(qφ|π).

1CMAP, Ecole Polytechnique, Universite Paris-Saclay, 91128
Palaiseau, France 2CDISE, Skolkovo Institute of Science
and Technology, Moscow, Russia 3Ecole Normale Supérieure
Paris-Saclay, Cachan. Correspondence to: Achille Thin
<achille.thin@polytechnique.edu>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML).

The design of the family Q of variational distributions has a
significant impact on the overall performance.

Recently, it has been suggested to enrich the traditional
mean field variational approximation by combining them
with invertible mappings with additional trainable parame-
ters. A popular implementation of this principle is the Nor-
malizing Flows (NFs) approach (Dinh et al., 2016; Rezende
& Mohamed, 2015; Kingma et al., 2016) in which a mean-
field variational distribution is deterministically transformed
through a fixed-length sequence of parameterized invertible
mappings.

The drawback of variational methods is that they only allow
the target distribution to be approximated by a paramet-
ric family of distributions. On the contrary, MCMC are
generic methods which have theoretical guarantees (Robert
& Casella, 2013). The basic idea behind MCMC is to design
a Markov chain (Zk)k∈N whose stationary distribution is π.
Under mild assumptions, the distribution of ZK converges
to the target π as K goes to infinity. Yet, this convergence
is in most cases slow and therefore this class of methods
can be prohibitively computationally expensive. The idea to
“bridge the gap” between MCMC and VI was first consid-
ered in (Salimans et al., 2015) and has later been pursued
in several works; see (Wolf et al., 2016), (Hoffman et al.,
2019) and (Caterini et al., 2018) and the references therein.
We follow this line of research and design a new method-
ology combining VI and MCMC. More specifically, our
contributions are as follows.

(1) We derive a new computationally tractable ELBO which
allows us to use a large class of MCMC methods for the
design of novel variational families.
(2) We then construct a new Metropolis-Hastings algorithm
MetFlow which can take advantage of the full computational
potential of Normalizing Flows. Contrary to classical vari-
ational inference using NFs, MetFlow guarantees that the
target distribution is invariant.
(3) We combine MetFlow and our new ELBO to obtain a
rich variational family which can be efficiently optimized.
(4) Finally, we present several numerical illustrations to
show that our approach allows us to meaningfully trade-off
between the approximation of the target distribution and
computations, improving over state-of-the-art methods.
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2. A New Combination Between VI and
MCMC

Basics of Metropolis-Hastings The Metropolis Hastings
(MH) algorithm to sample a density π w.r.t. the Lebesgue
measure on RD defines a Markov chain (Zk)k∈N with sta-
tionary distribution π as follows. Let (Uk)k∈N∗ be a se-
quence of i.i.d. random variables valued in (U,U), with den-
sity h w.r.t. to a measure µU, and Tφ : RD × U → RD be
a function parameterized by φ ∈ Φ1. (Uk) is referred to as
the innovation noise and Tφ as the proposal mapping. Con-
ditionally to the current state Zk ∈ RD, k ∈ N, a proposal
Yk+1 = Tφ(Zk, Uk+1) is sampled. Then, Zk+1 = Yk+1

with probability αMH
φ

(
Zk, Tφ(Zk, Uk+1)

)
and Zk+1 = Zk

otherwise. The acceptance ratio αMH
φ : R2D → [0, 1] is

designed so that the resulting Markov kernel, denoted by
Mφ,h, is reversible w.r.t. π.

With this notation, Mφ,h can be written, for z ∈ RD, A ∈
B(RD), as Mφ,h(z,A) =

∫
U
h(u)Qφ

(
(z, u),A

)
µU(du)

where for any z ∈ RD, u ∈ U, A ∈ B(RD),

Qφ((z, u),A) = αφ(z, u)δTφ(z,u)(A)

+
{

1− αφ(z, u)
}
δz(A) . (2)

In this definition, δz stands for the Dirac measure at z and
{αφ : RD × U→ [0, 1] , φ ∈ Φ} is a family of acceptance
functions related to the MH acceptance probabilities by
αφ(z, u) = αMH

φ

(
z, Tφ(z, u)

)
.

Variational Inference Meets Metropolis-Hastings Let
K ∈ N∗, {ξ0φ : φ ∈ Φ} on RD be a parametric family
of distributions and {hi}Ki=1 be density functions w.r.t µU.
Consider now the following variational family

Q = {ξKφ = ξ0φMφ,h1 · · ·Mφ,hK : φ ∈ Φ} , (3)

obtained by iteratively applying to the initial distribution ξ0φ
the Markov kernels (Mφ,hi)

K
i=1.

For any φ ∈ Φ, u ∈ U and z ∈ RD, denote by Tφ,u(z) =
Tφ(z, u), αφ,u(z) = αφ(z, u) and similarly for any A ∈
B(RD), Qφ,u(z,A) = Qφ

(
(z, u),A

)
.

The key assumption in this section is that for any φ ∈ Φ
and u ∈ U, Tφ,u is a C1 diffeomorphism. This property
is satisfied under mild condition on the proposal mapping.
Indeed, one of our main result is that if ξ0φ has density
w.r.t. the Lebesgue measure, then ξKφ as well. This is the
crux of the construction of our new ELBO in order to useQ
as a variational family.

For a C1(RD,RD) diffeomorphism ψ, define by Jψ(z) the
absolute value of the Jacobian determinant at z ∈ RD. For a

1In this work, φ collectively denotes the parameters used in the
proposal distribution

family {Ti}Ki=1 of mappings on RD and 1 ≤ i ≤ k <
K, define ©k

j=iTj = Ti ◦ · · · ◦ Tk, for a sequence of
vectors (xi)

K
i=1 note xK = (xi)

K
i=1 and for a sequence

{hi}Ki=1 of innovation noise densities w.r.t. µU, define
hK(uK) =

∏K
i=1 hi(ui). Finally, set α1

φ,u(z) = αφ,u(z)

and α0
φ,u(z) = 1− αφ,u(z).

Proposition 1. Assume that for any (u, φ) ∈ U×Φ, Tφ,u is
a C1 diffeomorphism and ξ0φ admits a density m0

φ w.r.t. the
Lebesgue measure. For any {ui}Ki=1 ∈ UK , the distribution
ξKφ (·|uK) = ξ0φQφ,u1 · · ·Qφ,uK has a density mK

φ given
by mK

φ (z|uK) =
∑

aK∈{0,1}K m
K
φ (z,aK |uK) where

mK
φ (z,aK |uK) =

∏K
i=1 α

ai
φ,ui

(
©K
j=iT

−aj
φ,uj

(z)
)

×m0
φ

(
©K
j=1T

−aj
φ,uj

(z)
)
J
©K
j=1T

−aj
φ,uj

(z) . (4)

In particular, for a sequence {hi}Ki=1 of innovation noise
densities, ξKφ (3) has a density w.r.t. the Lebesgue mea-
sure, explicitly given, for any z ∈ RD, by mK

φ (z) =∫
UK

{
mK
φ (z|uK)hK(uK)

}
dµ⊗KU (uK).

We can now apply the VI approach the family Q defined
in (3). As mK

φ (z) is intractable directly, we define Laux(φ)

Laux(φ) =
∑

aK∈{0,1}K
∫
hK(uK)mK

φ (zK ,aK |uK)

× log

(
2−K π̃(zK)

mK
φ (zK ,aK |uK)

)
dzKdµ⊗KU (uK) . (5)

Note that using Jensen’s inequality w.r.t. the den-
sity (uK ,aK) 7→ hK(uK)mK

φ (aK |zK ,uK), we get
Laux(φ) ≤ L(φ). The ELBO Laux can be optimized
w.r.t. φ, typically by stochastic gradient methods, which
requires an unbiased estimator of the gradient ∇Laux(φ).
Such estimators are amenable to the reparameterization
trick (Rezende et al., 2014).

3. MetFlow: MCMC and Normalizing Flows
We present in what follows a new class of MCMC methods,
Metropolized Flows (MetFlow), which can be cast in the
framework introduced in the previous section and for which
the proposal mappings are Normalizing Flows (NF). This
class of methods then naturally defines a variational family
Q of the form (3) for which the parameter φ is optimized
using (5). Our objective is to capitalize on the flexibility of
NFs to represent distributions, while keeping the theoretical
guarantees of MCMC.

Consider a flow Tφ : RD×U→ RD parametrized by φ ∈ Φ.
It is assumed that for any u ∈ U, Tφ,u : z 7→ Tφ(z, u) is
a C1 diffeomorphism. Set V = {−1, 1}. For any u ∈ U,
consider the involution T̊φ,u on RD × V, i.e. T̊φ,u ◦ T̊φ,u =
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Id, defined for z ∈ RD, v ∈ {−1, 1} by

T̊φ,u(z, v) = (T vφ,u(z),−v) . (6)

The variable v is called the direction. If v = 1 (respectively
v = −1), the “forward”(resp. “backward”) flow Tφ,u (resp.
T−1φ,u) is used. For any z ∈ RD, v ∈ {−1, 1}, A ∈ B(RD),
B ⊂ V, we define the kernel

Rφ,u
(
(z, v),A× B

)
= α̊φ,u(z, v)δTvφ,u(z)(A)⊗ δ−v(B)

+ {1− α̊φ,u(z, v)}δz(A)⊗ δv(B) , (7)

where α̊φ,u : RD × V→ [0, 1] is the acceptance function.

Proposition 2. Let ν be a distribution on V, and (u, φ) ∈
U × Φ. Assume that α̊φ,u : RD × V → [0, 1] satisfies for
any (z, v) ∈ RD × V,

α̊φ,u(z, v)π(z)ν(v)

= α̊φ,u
(
T̊φ(z, v)

)
π
(
T vφ,u(z)

)
ν(−v)JTvφ,u(z) . (8)

Then for any (u, φ) ∈ U × Φ, Rφ,u defined by (7) is re-
versible with respect to π ⊗ ν. In particular, if for any
(z, v) ∈ RD × V,

α̊φ,u(z, v) = ϕ
(
π
(
T vφ,u(z)

)
ν(−v)JTvφ,u(z)/π(z)ν(v)

)
,

for ϕ : R+ → R+, then (8) is satisfied if ϕ(+∞) = 1 and
for any t ∈ R+, tϕ(1/t) = ϕ(t).

Remark 1. The condition (8) on the acceptance ratio α̊φ,u
has been reported in (Tierney, 1998, Section 2), and stan-
dard choices for α̊φ,u are the Metropolis-Hastings and
Barker ratios which correspond to ϕ : t 7→ min(1, t) and
t 7→ t/(1 + t) respectively.

If we define for u ∈ U, v ∈ V, z ∈ RD, A ∈ B(RD),

Qφ,(u,v)(z,A) = Rφ,u((z, v),A× V) (9)
= α̊φ,u(z, v)δTvφ,u(z)(A) + {1− α̊φ,u(z, v)}δz(A) ,

we retrieve the framework defined in Section 2. In
turn, from a distribution ν for the direction, the family
{Qφ,(u,v) : (u, v) ∈ U × V} defines a MH kernel, given
for u ∈ U, z ∈ RD, A ∈ B(RD) by

Mφ,u,ν(z,A)= ν(1)Qφ,(u,1)(z,A)+ν(−1)Qφ,(u,−1)(z,A) .
(10)

The key result of this section is

Corollary 1. For any u ∈ U and any distribution ν, the
kernel Mφ,u,ν is reversible w.r.t. π.

As the reversibility is satisfied for any uK ∈ UK , we now
focus on a fixed sequence uK of proposal noise. This
allows us to consider a setting close to NF where dis-
tribution pushforwards are deterministic. We thus write
mK
φ,uK

(·|vK) = mK
φ (·|uK ,vK).

The choice of the transformation Tφ is really flexible. Let
{Tφ,i}Ki=1 be a family of K diffeomorphisms on RD. A
flow model based on {Tφ,i}Ki=1 is defined as a compo-
sition Tφ,K ◦ · · · ◦ Tφ,1 that pushes an initial distribu-
tion ξ0φ with density m0

φ to a more complex target distri-
bution ξKφ with density mK

φ , given for any z ∈ RD by
mK
φ (z) = m0

(
©K
i=1T−1φ,i(z)

)
J©K

i=1T
−1
φ,i

(z), see (Tabak &
Turner, 2013; Rezende & Mohamed, 2015; Kobyzev et al.,
2019; Papamakarios et al., 2019). We then construct a vari-
ational family Q of the form (2) based on (10) and the
same deterministic sequence of diffeomorphisms. More
precisely, a MetFlow model is obtained by applying succes-
sively the Markov kernels Mφ,1,ν , . . . ,Mφ,K,ν , written as,
for z ∈ RD, A ∈ B(RD), i ∈ {1, . . . ,K}:

Mφ,i,ν(z,A) =
∑
v∈V

ν(v)α̊φ,i(z, v)δTvφ,i(z)(A)

+(1−
∑
v∈V

ν(v)α̊φ,i(z, v))δz(A) .

Each of those is reversible w.r.t. the stationary distribution
π and thus leaves π invariant. In such a case, the resulting
distribution ξKφ is a mixture of the pushforward of ξ0φ by the
flows {TvKaKφ,K ◦ · · · ◦ Tv1a1φ,1 , vK ∈ VK ,aK ∈ {0, 1}K}.
The parameters φ of the flows {Tφ,i}Ki=1 are optimized by
maximizing the ELBO defined by (5) in which mK

φ,uK
is

substituted by mK
φ,1:K with Tφ,ui ← Tφ,i.

Among the different flow models which have been consid-
ered recently in the literature (Papamakarios et al., 2019),
we chose Real-Valued Non-Volume Preserving (RNVP)
flows (Dinh et al., 2016) because they are easy to com-
pute and invert. Other implementations are left to future
work (Ho et al., 2019; Kingma et al., 2016; Huang et al.,
2018; Cao et al., 2019; Wehenkel & Louppe, 2019).l

4. Experiments
We illustrate in this section the computational benefits of
our new VI approach using a MetFlow model using RNVP
flows. We present examples of sampling from complex
synthetic distributions which are often used to benchmark
generative models, such as a mixture of highly separated
Gaussians and other non-Gaussian 2D distributions. We
also present posterior inference approximations and inpaint-
ing experiments on MNIST dataset, in the setting outlined
by (Levy et al., 2017).

We consider two settings. In the deterministic setting, we
use K different RNVP transforms {Tφ,i}Ki=1, and the pa-
rameters for each individual transform Tφ,i are different. In
the pseudo-randomized setting, we define global transfor-
mation Tφ on RD × U and set Tφ,i = Tφ(·, ui), where uK
are K independent draws from a standard normal distribu-
tion. In such case, the parameters are the same for the flows
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Figure 1. Sampling a mixture of 8 Gaussian distributions. Top
row from left to right: Target distribution, MetFlow, MetFlow
with 145 resampled innovation noise. Bottom row from left to
right: Prior distribution, First run of RNVP, Second run of RNVP.
MetFlow finds all the modes and improves with more iterations,
while RNVP depend on a good initialization to find all the modes
and fails to separate them correctly.

Tφ,i, only the innovation noise ui differs. Typically, RNVP
are encoded by neural networks. In the second setting, the
network will thus take as input z and u stacked together.

In the second setting, once training has been com-
pleted and a fit φ̂ of the parameters has been obtained,
we can sample additional noise innovations (ui)

mK
i=K+1.

We then consider the distribution given by ξmK
φ̂

=

ξK
φ̂
Mφ̂,uK+1,ν

, . . . ,Mφ̂,umK ,ν
where ν is typically the uni-

form on {−1, 1}, as defined as in Section 3. mK corre-
sponds to the length of the final Markov chain we consider.
In practice, we have found that sampling additional noise
innovations this way yields a more accurate approximation
of the target, thanks to the asymptotic guarantees of MCMC.

4.1. Synthetic data. Examples of sampling.

Mixture of Gaussians The objective is to sample from
a mixture of 8 Gaussians in dimension 2, starting from a
standard normal prior distribution q0, and compare Met-
Flow to RNVP. We are using an architecture of five RNVP
flows (K = 5), each of which is parametrized by two
three-layer fully-connected neural networks with LeakyRelu
(0.01) activations. In this example, we consider the pseudo-
randomized setting. The results for MetFlow and for RNVPs
alone are shown on Figure 1. First, we observe that while
our method successfully finds all modes of the target distri-
bution, RNVP alone struggles to do the same. Our method
is therefore able to approximate multimodal distributions
with well separated modes. Here, the mixture structure
of the distribution (with potentially 35 = 243 modes) pro-
duced by MetFlow is very appropriate to such a problem.
On the contrary, classical flows are unable to approximate
well separated modes starting from a simple unimodal prior,
without much surprise. In particular, mode dropping is a

Figure 2. Density matching example (Rezende & Mohamed, 2015)
and comparison between RNVP and MetFlow.

serious issue even in small dimension. Moreover, an other
advantage of MetFlow in the pseudo randomized setting is
to be able to iterate the learnt kernels which still preserve
the target distribution. Iterating MetFlow kernels widens
the gap between both approaches, significantly improving
the accuracy of our approximation.

Non-Gaussian 2D Distributions In a second experiment,
we sample the non-Gaussian 2D distributions proposed
in (Rezende & Mohamed, 2015). Figure 2 illustrates the
performance of MetFlow compared to RNVP. We are again
using 5 RNVPs (K = 5) with the architecture described
above, and use the pseudo-randomized setting for MetFlow.
After only five steps, MetFlow already finds the correct form
of the target distribution, while the simple RNVP fails on the
more complex distributions. Moreover, iterating again Met-
Flow kernels allows us to approximate the target distribution
with striking precision, after only 50 MCMC steps.

4.2. Deep Generative Models

Deep Generative Models (DGM), such as Deep Latent Gaus-
sian Models (see Kingma & Welling (2013); Rezende et al.
(2014)) have recently become very popular. The basic as-
sumption in a DGM is that the observed data x is generated
by sampling a latent vector z which is used as the input
of a deep neural network. This network then outputs the
parameters of a family of distributions (e.g., the canonical
parameters of exponential family like Bernoulli or Gaussian
distributions) from which the data are sampled. Given data
generated by a DGM, a classical problem is to approach
the conditional distribution p(z | x) of the latent variables
z given the observation x, using variational inference to
construct an amortized approximation.

We consider the binarized MNIST handwritten digit dataset.
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The generative model is as follows. The latent variable z is
a l = 64 dimensional standard normal Gaussian. The obser-
vation x = (xj)Dj=1 is a vector of D = 784 bits. The bits
(xj)Dj=1 are, given the latent variable z, conditionally inde-
pendent Bernoulli distributed random variables with success
probability pθ(z)j where (pjθ)

D
j=1 is the output of a con-

volutional neural network. In this framework, pθ is called
the decoder. In the following, we show that our method
provides a flexible and accurate variational approximation
of the conditional distribution of the latent variable given
the observation pθ(z | x), outperforming mean-field and
Normalizing Flows based approaches.

As we are focusing in this paper on the comparison of VI
methods to approximate complex distributions and not on
learning the Variational Auto Encoder itself, we have chosen
to use a fixed decoder for both Normalizing Flows (here,
Neural Autoregessive Flows) and MetFlow (with RNVP
transforms). The decoder is obtained using state-of-the-art
method. We can illustrate the expressivity of MetFlow in
two different ways. We first fix L different samples. In
this example, we take L = 3 images representing the digit
“3”. We are willing to approximate, for a given decoder
pθ, the posterior distribution pθ(z|(xi)Li=1). We show in
Figure 3 the decoded samples corresponding to the follow-
ing variational approximations of pθ(·|(xi)Li=1): (i) a NAF
trained from the decoder to approximate pθ(·|(xi)Li=1) and
(ii) MetFlow in the deterministic setting with K = 5 RNVP
flows.

Figure 3 shows that the samples generated from (i) collapse
essentially to one mode corresponding to the first digit. On
the contrary, MetFlow is able to capture the three different
modes of the posterior and generates much more variability
in the decoded samples. We now consider the in-painting set-
up introduced in (Levy et al., 2017, Section 5.2.2). Formally,
we in-paint the top of an image using Block Gibbs sampling.
Given an image x, we denote xt, xb the top and the bottom
half pixels. Starting from an image x0, we sample at each
step zt ∼ pθ(z | xt) and then x̃ ∼ pθ(x | zt). We the
set xt+1 = (x̃t, xb0). We give the output of this process
when sampling from the mean-field approximation of the
posterior only, the mean-field pushed by a NAF, or using
our method. The result for the experiment can be seen on
Figure 4.

We can see that MetFlow mixes easily between different
modes, and produces sharp images. We recognize further-
more different digits (3,5,9). It is clear from the middle plot
that the mean-field approximation is not able to capture the
complexity of the distribution pθ(z | x). Finally, the NAF
improves the quality of the samples but does not compare
to MetFlow in terms of mixing.

Figure 3. Mixture of ’3’ digits. Top: Fixed digits, Middle: NAF
samples, Bottom: MetFlow samples. Compared to NAF, MetFlow
is capable to mix better between these modes, while NAF seems
to collapse.

Figure 4. Top line: Mean-Field approximation and MetFlow, Mid-
dle line: Mean-Field approximation, Bottom line: Mean-Field
Approximation and NAF. Orange samples on the left represent
the initialization image. We observe that MetFlow easily mixes
between the modes while other methods are stuck in one mode.
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