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Abstract

Variational auto-encoders (VAEs) are a power-
ful approach to unsupervised learning. They
enable scalable approximate posterior inference
in latent-variable models using variational infer-
ence (VI). A VAE posits a variational family
parameterized by a deep neural network—called
an encoder—that takes data as input. This en-
coder is shared across all the observations, which
amortizes the cost of inference. However the
encoder of a VAE has the undesirable property
that it maps a given observation and a semantic-
preserving transformation of it to different latent
representations. This “inconsistency" in the rep-
resentations induced by the encoder negatively
affects generalization. In this paper, we propose
a regularization method to enforce consistency
in VAEs. The idea is to minimize the Kullback-
Leibler (KL) divergence between the variational
distribution when conditioning on the observa-
tion and the variational distribution when condi-
tioning on a random semantic-preserving trans-
formation of this observation. This regularization
is applicable to any VAE. In our experiments we
apply it to three different VAE variants on sev-
eral benchmark datasets and found it always im-
proves generalization but also yields more inter-
pretable latent variables as measured by mutual
information.

1. Introduction
VAEs have significantly impacted research on unsuper-
vised learning. They have been used in several areas, in-
cluding density estimation for images (Kingma & Welling,
2013; Rezende et al., 2014), image generation (Gregor
et al., 2015), text generation (Bowman et al., 2015; Fang
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Flows, and Explicit Likelihood Models (ICML 2020), Virtual
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et al., 2019), language modeling (Dieng et al., 2016), mu-
sic generation (Roberts et al., 2018), topic modeling (Miao
et al., 2016; Dieng et al., 2019), and recommendation sys-
tems (Liang et al., 2018).

VAEs extend deterministic auto-encoders to probabilistic
generative modeling. The encoder of a VAE parameterizes
an approximate posterior distribution over latent variables
of a generative model. The encoder is shared between all
observations, which amortizes the cost of posterior infer-
ence. Once fitted, the encoder of a VAE can be used to
obtain low-dimensional representations of data, (e.g. for
downstream tasks.) The quality of these representations
is therefore very important to a successful application of
VAEs.

Researchers have looked at ways to improve the quality
of the latent representations of VAEs, often tackling the
so-called latent variable collapse problem—in which the
approximate posterior distribution induced by the encoder
collapses to the prior over the latent variables (Bowman
et al., 2015; Kim et al., 2018; Dieng et al., 2018; He et al.,
2019; Fu et al., 2019).

In this paper, we focus on a different problem pertaining
to the latent representations of VAEs for image data. In-
deed, the encoder of a fitted VAE, tends to map a semantics-
preserving transformation of an image to a different la-
tent representation than the original image. This “incon-
sistency" negatively affects generalization. We propose a
simple idea to enforce consistency in VAEs. The idea is
to maximize the likelihood of both the images and their
semantics-preserving transformations and minimize the KL
divergence between the approximate posterior distribution
induced by the encoder when conditioning on the image, on
one hand, and its transformation, on the other hand. This
regularization technique can be applied to any VAE variant
to improve generalization. We call a VAE with this form of
regularization, a consistency-regularized variational auto-
encoder (CR-VAE).

Section 1 illustrates the inconsistency problem of VAEs and
how CR-VAEs address this problem. The figure shows the
representations learned by a VAE fitted on MNIST (Fig-
ure 1a.) The red dots represent the representations of
few images from the test set and the blue dots represent
the representations of their transformations. We applied
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semantics-preserving transformations: rotation, transla-
tion, and scaling. The VAE maps each image and its trans-
formation to different parts in the latent space as evidenced
by the long arrows connecting each pair. Even when the
VAE is fitted using MNIST augmented with semantics-
preserving image transformations, this inconsistency prob-
lem still occurs (Figure 1b.) The CR-VAE does not suffer
from the inconsistency problem; it maps each image and
its transformation to nearby areas in the latent space, as ev-
idenced by the short arrows connecting each pair.

In Section 4 we apply the proposed technique to three VAE
variants, the original VAE (Kingma & Welling, 2013), the
importance-weighted auto-encoder (IWAE) (Burda et al.,
2015), and the β-VAE (Higgins et al., 2017). We found, on
three different benchmark datasets, that CR-VAEs always
generalize better than their base VAEs. We also found CR-
VAEs learn more meaningful latent representations as mea-
sured by mutual information and number of active units
in the learned representations. An ablation study reveals
the imposed KL constraint further improves predictive and
qualitative performance.

2. Method
We consider a latent-variable model pθ(x, z) = pθ(x|z) ·
p(z), where x denotes an observation and z is its associated
latent variable. The marginal p(z) is a prior over the latent
variable and pθ(x|z) is an exponential family distribution
whose natural parameter is a function of z parameterized
by θ, e.g. through a neural network. Our goal is to learn
the parameters θ and a posterior distribution over the la-
tent variables. The approach of VAEs is to maximize the
evidence lower bound (ELBO), a lower bound on the log
marginal likelihood of the data,

LVAE = ELBO = Eqφ(z|x)
[
log

(
pθ(x, z)

qφ(z|x)

)]
(1)

where qφ(z|x) is an approximate posterior distribution over
the latent variables. The idea of a VAE is to let the pa-
rameters of the distribution qφ(z|x) be given by the out-
put of a neural network, with parameters φ, that takes x
as input. The parameters θ and φ are then jointly op-
timized by maximizing a Monte Carlo approximation of
the ELBO using the reparameterization trick (Kingma &
Welling, 2013).

Consider a semantic-preserving transformation t(x̃|x) of
data x (e.g. rotation or translation for images.) A good rep-
resentation learning algorithm should provide similar latent
representations for x and x̃. This is not the case for the
VAE that maximizes Equation 1 and its variants. Once fit
to data, the encoder of a VAE is unable to yield similar la-
tent representations for a data x and its tranformation x̃.
This is because there is nothing in Equation 1 that forces
this desideratum.

We now propose a regularization method that ensures con-
sistency of the encoder of a VAE. We call a VAE with
such a regularization a CR-VAE. The regularization pro-
posed is applicable to many variants of the VAE such as
the IWAE (Burda et al., 2015) and the β-VAE (Higgins
et al., 2017). In what follows, we use the standard VAE,
the one that maximizes Equation 1, as the base VAE to reg-
ularize.

A CR-VAE maximizes the following objective,

LCR-VAE = LVAE + Et(x̃|x)Eqφ(z̃|x̃)
[
log

(
pθ(x̃, z̃)

qφ(z̃|x̃)

)]
− η · Et(x̃|x) [KL (qφ(z|x)||qφ(z̃|x̃))] . (2)

Here LVAE is the base VAE being regularized. The sec-
ond term of Equation 2 is the regularizer; it is an expecta-
tion over the transformations. This regularization has two
components. The first component renders transformed data
x̃ likely under the model; it is a data augmentation term.
The second component of the regularizer ensures x and its
transformation x̃ have close representations in the latent
space. Although we defined closeness using KL. Here λ
and η are hyperparameters that determine the strength of
the regularization.

We draw samples from t(x̃|x) by applying random
semantic-preserving transformations to x. More con-
cretely, for image data, we apply translations with ran-
domly sampled length or rotations with randomly sampled
angle to get x̃. Consider an image x. We draw x̃ from
t(x̃|x) as follows:

x̃ ∼ t(x̃|x) ⇐⇒ ε ∼ p(ε), x̃ = g(x, ε). (3)

Here g(x, ε) is a random semantics-preserving transforma-
tion of the image x, e.g. translation with random length ε
drawn from p(ε) = U [−δ, δ] for some threshold δ.

Note Equation 2 is intractable because the expectations are
intractable. We approximate LCR-VAE using Monte Carlo
with the reparameterization trick. That is, we approximate
Equation 2 by drawing one-sample from t(x̃|x) following
Equation 3 and one sample from qφ(z|x) and qφ(z̃|x̃) using
the reparameterization trick.

3. Related Work
Applying consistency regularization to VAEs, as we do
in this paper, has not been previously explored. Consis-
tency regularization is a widely used technique for semi-
supervised learning (Bachman et al., 2014; Sajjadi et al.,
2016; Laine & Aila, 2016; Miyato et al., 2018; Xie et al.,
2019). The core idea behind consistency regularization
for semi-supervised learning is to force classifiers to learn
representations that are insensitive to semantics-preserving
changes to images, so as to improve classification of unla-
beled images. Examples of semantics-preserving changes
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(a) VAE (b) VAE+Aug (c) CR-VAE

Figure 1. Illustration on MNIST of the inconsistency issue of VAEs and how CR-VAEs address this problem. The red dots correspond
to the representations of few images from the test set. The blue dots correspond to the representations of the transformed images. The
transformations used here are rotations, translations, and scaling; they are semantics-preserving. (a): the VAE maps the two sets of
images to different areas in the latent space. (b): even when trained with the original dataset augmented with the transformed images,
the VAE still maps the two sets of images to different parts in the latent space. (c): the CR-VAE maps each pair in the two sets of images
to nearby areas in the latent space.

used in the literature include rotation, zoom, translation,
crop, or adversarial attacks. Consistency is often enforced
by minimizing the L2 distance between a classifier’s logit
output for an image and the logit output for its semantics-
preserving transformation (Sajjadi et al., 2016; Laine &
Aila, 2016), or by minimizing the KL divergence between
the classifier’s label distribution induced by the image and
that of its tranformation (Miyato et al., 2018; Xie et al.,
2019). Prior work in denoising and contraactive auto-
encoders have also explored similar problems (Rifai et al.,
2011; Vincent et al., 2008; 2010).

More recently, consistency regularization has been applied
to generative adversarial networks (GANs) (Goodfellow
et al., 2014). Indeed (Wei et al., 2018; Zhang et al., 2020)
show that applying consistency regularization on the dis-
criminator of a GAN—also a classifier—can substantially
improve its performance. The work differs from the works
above in two ways. First, it applies consistency regulariza-
tion to VAEs for image data. Second, it leverages consis-
tency regularization, not in the label or logit space, as done
in the works mentioned above, but in the latent space which
is lower-dimensional.

4. Empirical Study
In this section we show CR-VAE significantly improves
the generalization performance of its base VAE and yields
more interpretable latent representations. We also show
that the proposed regularization method is amenable to dif-
ferent VAE variants by applying it to the IWAE and the
β-VAE. Finally, we conduct an ablation study to assess
the effect of λ and η in Equation 2. We found that only
regularizing with data augmentation (λ > 0) significantly
improves performance but that accounting for the KL term
(η > 0) further improves both quantitative and qualitative
performance.

4.1. Experimental Protocol
We study three benchmark datasets: MNIST, OMNIGLOT,
and CELEBA.

We consider three transformations t(x̃|x). The first ran-
domly translates an image [−2, 2] pixels in any direction.
The second transformation randomly rotates an image uni-
formly in [−15, 15] degrees clockwise. Finally the third
transformation randomly scales an image by a factor uni-
formly sampled from [0.9, 1.1].

To test the effectiveness of the proposed method to gener-
alize to changes in distribution, we create a transformed-
test set (t-Test set) from the original test set. To obtain the
transformed-test set we perform the same transformations
as above but increase their magnitude. Specifically, we ran-
domly translate each image in the test set in [−4, 4] pixels
in any direction, randomly rotate each image in [−30, 30]
degrees clockwise, and randomly scale each image by a
factor uniformly sampled from [0.75, 1.25]. By increasing
the magnitude of the transformations, we are able to test
the ability to generalize to distribution shifts. We measure
held-out log-likelihood on the original test set and the t-Test
set.

We consider mutual information (MI) and number of active
units (AU) as measures of the quality of the learned latent
variables (Dieng et al., 2018).

The VAEs are built on the same architecture as (Tolstikhin
et al., 2017). The networks are trained with the Adam op-
timizer with a learning rate of 10−4 (Kingma & Ba, 2014)
and trained for 100 epochs with a batch size of 64. We set
the dimensionality of the latent variables to 50, therefore
the maximum number of active units in the latent space is
50. We set λ = 1 for all the experiments. We found η = 0.1
to be best according to cross-validation using held-out log-
likelihood and exploring the range [1e−4, 1.0] datasets. In
an ablation study we explore η = 0. For the β-VAE we set
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Table 1. CR-VAEs generalize better than their base VAEs on MNIST as evidenced by lower negative held-out log-likelihood on both the
original test set and the t-Test set. CR-VAEs also learn more meaningful latent representations as evidenced by higher mutual information
and active units.

NLL MI AU
Method Test Set t-Test Set Test Set t-Test Set Test Set t-Test Set

VAE 83.7± 0.3 338.7± 1.7 124.5± 1.1 171.6± 5.4 36± 0.8 36± 0.8
CR-VAE 81.2 ± 0.2 129.5 ± 0.4 126.3 ± 0.9 216.4 ± 1.2 47 ± 0.5 47 ± 0.5

IWAE 81.7± 0.3 318.0± 0.8 127.1± 0.7 180.9± 3.9 39± 0.5 39± 0.5
CR-IWAE 79.7 ± 0.3 124.8 ± 0.8 129.7 ± 1.0 223.9 ± 0.8 50 ± 0 50 ± 0

β-VAE (β = 0.5) 92.6± 0.3 285.3± 0.8 284.3± 1.1 359.9± 2.2 50± 0 50± 0
β-CR-VAE (β = 0.5) 85.7 ± 0.6 123.4 ± 0.6 291.9 ± 0.7 490.2 ± 1.0 50 ± 0 50 ± 0

β-VAE (β = 10) 126.1 ± 1.8 361.3± 1.5 6.3± 0.6 7.6± 0.9 8± 1.7 8± 1.7
β-CR-VAE (β = 10) 126.2± 0.5 225.8 ± 0.9 6.9 ± 0.6 10.6 ± 0.4 10 ± 0.5 10 ± 0.5

Table 2. CR-VAEs generalize better than their base VAEs on OMNIGLOT as evidenced by lower negative held-out log-likelihood on
both the original test set and the t-Test set. CR-VAEs also learn more meaningful latent representations as evidenced by higher mutual
information and active units.

NLL MI AU
Method Test Set t-Test Set Test Set t-Test Set Test Set t-Test Set

VAE 128.2± 0.8 863.1± 4.2 105.4± 1.2 115.4± 2.5 50± 0 50± 0
CR-VAE 124.1 ± 0.1 381.2 ± 1.6 107.8 ± 1.1 215.6 ± 0.6 50 ± 0 50 ± 0

IWAE 127.5± 0.5 861.1± 2.9 110.3± 1.1 112.4± 1.4 50± 0 50± 0
CR-IWAE 123.6 ± 0.5 381.2 ± 1.2 115.3 ± 0.8 224.5 ± 0.6 50 ± 0 50 ± 0

β-VAE (β = 0.5) 137.1± 0.2 947.7± 5.2 143.4± 1.0 148.3± 0.9 50± 0 50± 0
β-CR-VAE (β = 0.5) 132.5 ± 0.3 388.2 ± 1.0 169.5 ± 0.5 378.3 ± 2.0 50 ± 0 50 ± 0

β-VAE (β = 10) 157.5 ± 1.1 937.0± 3.4 1.4± 0.2 8.3± 0.6 4± 0.9 4± 0.9
β-CR-VAE (β = 10) 157.6± 0.6 562.0 ± 2.1 1.6 ± 0.1 22.5 ± 0.5 4 ± 0.5 4 ± 0.5

Table 3. CR-VAEs generalize better than their base VAEs on CELEBA as evidenced by lower negative held-out log-likelihood on both
the original test set and the t-Test set. CR-VAEs also learn more meaningful latent representations as evidenced by higher mutual
information and active units.

NLL MI AU
Method Test Set t-Test Set Test Set t-Test Set Test Set t-Test Set

VAE 66.1± 0.2 108.3± 0.4 33.8± 0.2 55.1± 1.0 32± 0.9 32± 0.9
CR-VAE 65.9 ± 0.2 98.3 ± 0.8 34.9 ± 0.5 67.1 ± 0.9 33 ± 1.2 33 ± 1.2

IWAE 65.3± 0.1 105.1± 0.6 36.9± 0.5 61.2± 1.0 36± 1.6 36± 1.6
CR-IWAE 65.0 ± 0.2 97.6 ± 0.8 38.4 ± 0.5 74.1 ± 1.1 36 ± 1.9 36 ± 1.9

β-VAE (β = 0.5) 68.7± 0.2 110.1± 0.6 75.8± 0.5 124.3± 1.8 49± 0.5 49± 0.5
β-CR-VAE (β = 0.5) 68.2 ± 0.1 96.7 ± 0.2 77.1 ± 0.1 141.6 ± 1.0 50 ± 0 50 ± 0

β-VAE (β = 10) 92.7± 0.5 172.4± 1.5 3.6± 0.3 3.7± 0.3 7± 0.8 7± 0.8
β-CR-VAE (β = 10) 92.6 ± 0.1 147.6 ± 0.6 3.7 ± 0.4 4.1 ± 0.3 9 ± 0.9 9 ± 0.9

η = 0.1·β and study both β = 0.1 and β = 10, two regimes
under which the β-VAE performs qualitatively very differ-
ently (Higgins et al., 2017).

4.2. Results
Table 1, Table 2, and Table 3 show generalization perfor-
mance and the quality of the learned latent representations
for different VAE variants and their CR-VAEs counterparts.
These results show that applying consistency regularization

always improves generalization performance. More inter-
estingly, CR-VAEs improve out-of-distribution generaliza-
tion of their base VAEs, as evidenced by improved negative
log-likelihood scores on the transformed test set.

Although our original focus is to improve generalization
by solving the inconsistency issue of VAEs, the results in
Table 1, Table 2, and Table 3 show that CR-VAEs also yield
more meaningful learned latent representations than their
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Table 4. Ablation study on the impact of the KL term in Equation 2. On all datasets, the KL term of the CR-VAE objective helps improve
both generalization and qualitative performance.

NLL MI AU
Method Test Set t-Test Set Test Set t-Test Set Test Set t-Test Set

VAE+Aug+MNIST 82.8± 0.4 131.3± 0.5 125.9± 0.2 208.4± 0.4 42± 0.5 42± 0.5
CR-VAE+MNIST 81.2 ± 0.2 129.5 ± 0.4 126.3 ± 0.9 216.4 ± 1.2 47 ± 0.5 47 ± 0.5

VAE+Aug+Omniglot 125.7± 0.2 402.5± 1.4 105.9± 0.7 208.3± 0.8 50 ± 0 50 ± 0
CR-VAE+Omniglot 124.1 ± 0.1 381.2 ± 1.6 107.8 ± 1.1 215.6 ± 0.6 50 ± 0 50 ± 0

VAE+Aug+CelebA 66.0± 0.2 98.4± 0.3 34.1± 0.8 63.1± 0.7 33 ± 0.9 33 ± 0.9
CR-VAE+CelebA 65.9 ± 0.2 98.3 ± 0.8 34.9 ± 0.5 67.1 ± 0.9 33 ± 1.2 33 ± 1.2

base VAEs as evidenced by higher mutual information and
active units.

Table 4 shows the results of an ablation study to assess the
importance of the KL term imposed on the approximated
posterior induced by the encoder when conditioning on the
data x (qφ(z|x)) and when conditioning on its transforma-
tion x̃ (qφ(z̃|x̃).) From Table 4, we conclude this constraint
further helps improve performance, both in terms of gen-
eralization and in terms of the quality of the learned la-
tents.

5. Conclusion
We proposed a simple idea to constrain encoders of VAEs
to learn similar latent representations for an image and
a semantics-preserving transformation of the image. The
idea consists in maximizing the likelihood of the images
and their semantics-preserving transformations and to min-
imize the KL divergence between the variational distribu-
tion induced by the encoder when conditioning on the im-
age and its transformation. We applied this technique to
three VAE variants on three benchmark datasets. We found
it always leads to better generalization as measured by
held-out log-likelihood and more meaningful latent repre-
sentations as measured by mutual information and number
of active units. An ablation study revealed the KL constrain
further improves performance.
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