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Abstract
Detecting out-of-distribution (OOD) data is cru-
cial for robust machine learning systems. For ex-
ample, a model trained for automated diagnosis of
chest X-rays should be able to automatically iden-
tify out-of-distribution inputs to make safe predic-
tions. Normalizing flows are flexible deep genera-
tive models with a tractable likelihood which were
expected to be well-suited for OOD detection.
However, normalizing flows often fail to distin-
guish between in- and out-of-distribution data: a
flow trained on pictures of clothing assigns higher
likelihood to handwritten digits. In this work, we
investigate why normalizing flows perform poorly
for OOD detection and argue that such behaviour
is not surprising. We demonstrate that the flows
learn local pixel correlations and generic image-
to-latent-space transformations which are not spe-
cific to the target image dataset. We show that
by modifying the architecture of flow coupling
layers we can bias the flow towards learning the
semantic structure of the target data, improving
OOD detection. Our work shows that properties
that enable flows to generate high-fidelity images
can have a detrimental effect on OOD detection.

1. Introduction
Normalizing flows (Tabak & Turner, 2013; Dinh et al., 2014;
2016) seem to be ideal candidates for out-of-distribution
detection, since they are simple generative models that pro-
vide an exact likelihood. However, Nalisnick et al. (2018)
revealed the puzzling result that flows often assign higher
likelihood to out-of-distribution data than the data used for
maximum likelihood training. In Figure 1(a), we show the
log-likelihood histogram for a RealNVP flow model (Dinh
et al., 2016) trained on the ImageNet dataset (Russakovsky
et al., 2015) subsampled to 64 × 64 resolution. The flow
assigns higher likelihood to both the CelebA dataset of
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celebrity photos and the SVHN dataset of images of house
numbers compared to the target ImageNet dataset.

While there has been empirical progress in improving OOD
detection with flows (Nalisnick et al., 2018; Choi et al.,
2018; Nalisnick et al., 2019; Serrà et al., 2019; Song et al.,
2019a; Zhang et al., 2020), the fundamental reasons for why
flows fail at OOD detection in the first place are not fully
understood. In this paper, we show how the inductive biases
(Mitchell, 1980) of flow models — implicit assumptions
in the architectures and training procedures — can hinder
OOD detection.

In particular, our contributions are the following:

• We show that flows learn latent representations for
images largely based on local pixel correlations, rather
than semantic content, making it difficult to detect data
with anomalous semantics.

• We identify mechanisms through which normalizing
flows can simultaneously increase likelihood for all
structured images. For example, in Figure 1(b, c), we
show that the coupling layers of RealNVP transform
the in-distribution ImageNet in the same way as the
OOD CelebA.

• We show that by changing the architectural details of
the coupling layers, we can encourage flows to learn
transformations specific to the target data, improving
OOD detection (in Appendix K).

• We show that OOD detection is improved when flows
are trained on high-level features which contain se-
mantic information extracted from image datasets (in
Appendix N).

2. Why flows fail to detect OOD data
Normalizing flows consistently fail at out-of-distribution
detection when applied to common benchmark datasets (see
Appendix F). In this paper, we discuss the reasons behind
this surprising phenomenon. We summarize our thesis as
follows:
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(a) Log-likelihoods (b) ImageNet input, in-distribution (c) CelebA input, OOD

Figure 1. RealNVP flow on in- and out-of-distribution images. (a): A histogram of log-likelihoods that a RealNVP flow trained on
ImageNet assigns to ImageNet, SVHN and CelebA. The model assigns higher likelihood to out-of-distribution data. (b, c): A visualization
of the intermediate layers of a RealNVP model on an (b) in-distribution image and (c) OOD image. The first row shows the coupling layer
activations, the second and third rows show the scale s and shift t parameters predicted by a neural network applied to the corresponding
coupling layer input. Both on in-distribution and out-of-distribution images, s and t accurately approximate the structure of the input,
even though the model has not observed inputs similar to the OOD image during training. Flows learn generic image-to-latent-space
transformations that leverage local pixel correlations and graphical details rather than the semantic content needed for OOD detection.

The maximum likelihood objective has a limited
influence on OOD detection, relative to the induc-
tive biases of the flow, captured by the modelling
assumptions of the architecture.

Why should flows be able to detect OOD inputs?
Flows are trained to maximize the likelihood of the training
data. Likelihood is a probability density function p(D) de-
fined on the image space and hence has to be normalized.
Thus, it cannot be simultaneously increased on all the in-
puts. In fact, if the flow were arbitrarily flexible, the optimal
maximizer of (1) would only assign positive density to the
datapoints in the training set, and, in particular, would not
generalize to the test set of the same dataset. In practice, test
and train likelihood for flows have very similar distributions
(see e.g. Figure 1(a)). Thus, the flows are not maximizing
the likelihood (1) to values close to the global optimum.

What is OOD data? There are infinitely many distribu-
tions that give rise to any value of the likelihood objective in
(1) except for the global optimum. Indeed, any non-optimal
solution assigns probability mass outside of the training
data distribution; we can arbitrarily re-assign this proba-
bility mass to get a new solution with the same value of
the objective (see Appendix C for a detailed discussion).
In this scenario, the specific solution that the model will
end up with is defined by the inductive biases of the model.
In particular, the inductive biases will affect what data is
assigned high likelihood (in-distribution) and what data is
not (OOD).

What inductive biases are needed for OOD detection?
The datasets in computer vision are typically defined by the
content of the images. For example, the CelebA dataset
consists of images of faces, and SVHN contains images of
house numbers. In order to detect OOD data, the induc-

tive biases of the model have to be aligned with learning
the semantic structure of the data, i.e. what objects are
represented in the data.

What are the inductive biases of normalizing flows?
In the remainder of the paper, we explore the inductive
biases of normalizing flows. We argue that flows are biased
towards learning graphical properties of the data such as
local pixel correlations (e.g. nearby pixels usually have sim-
ilar colors) rather than semantic properties of the data (e.g.
what objects are shown in the image).

Flows have capacity to distinguish datasets In Ap-
pendix D, we show that if we explicitly train flows to dis-
tinguish between a pair of datasets, they can assign large
likelihood to one dataset and low likelihood to the other.
However, when trained with the standard maximum likeli-
hood objective, flows do not learn to make this distinction.
The inductive biases of the flows prefer solutions that assign
high likelihood to most structured datasets simultaneously.

3. Flow latent spaces
Normalizing flows learn highly non-linear image-to-latent-
space mappings often using hundreds of millions of param-
eters. One could imagine that the learned latent representa-
tions have a complex structure, encoding high-level seman-
tic information about the inputs. In this section, we visualize
the learned latent representations on both in-distribution and
out-of-distribution data and demonstrate that they encode
simple graphical structure rather than semantic information.
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Observation: There exists a correspondence be-
tween the coordinates in an image and in its learned
representation. We can recognize edges of the inputs
in their latent representations.
Significance for OOD detection: In order to de-
tect OOD images, a model has to assign likelihood
based on the semantic content of the image (see Sec.
2). Flows do not represent images based on their
semantic contents, but rather directly encode their
visual appearance.

In the first four columns of Figure 8, we show latent repre-
sentations1 of a RealNVP model trained on FashionMNIST
for an in-distribution FashionMNIST image and an out-
of-distribution MNIST digit. The first column shows the
original image x, and the second column shows the corre-
sponding latent z. The latent representations appear noisy
both for in- and out-of-distribution samples, but the edges
of the MNIST digit can be recognized in the latent. In the
third column of Figure 8, we show latent representations
averaged over K = 40 samples of dequantization noise2 εk:
1
K

∑K
k=1 f

−1(x+ εk). In the averaged representation, we
can clearly see the edges from the original image. Finally, in
the fourth panel of Figure 8, we visualize the latent represen-
tations (for a single sample of dequantization noise) from
a flow when batch normalization layers are in train mode
(Ioffe & Szegedy, 2015). In train mode, batch normalization
layers use the activation statistics of the current batch, and in
evaluation mode they use the statistics accumulated over the
train set. While for in-distribution data there is no structure
visible in the latent representation, the out-of-distribution
latent clearly preserves the shape of the 7-digit from the in-
put image. In the remaining panels of Figure 8, we show an
analogous visualization for a RealNVP trained on CelebA
using an SVHN image as OOD. In the third panel of this
group, we visualize the blue channel of the latent representa-
tions. Again, the OOD input can be recognized in the latent
representation; some of the edges from the in-distribution
CelebA image can also be seen in the corresponding latent
variable. Additional visualizations (e.g. for Glow) are in
Appendix H.

Insights into prior work The group anomaly detection
algorithm proposed in Zhang et al. (2020) uses correlations
of the latent representations as an OOD score. Song et al.
(2019a) showed that normalizing flows with batch normal-

1For the details of the visualization procedure and the training
setup please see Appendices G and E.

2When training flow models on images or other discrete data,
we use dequantization to avoid pathological solutions (Uria et al.,
2013; Theis et al., 2015): we add uniform noise ε ∼ U [0; 1] to
each pixel xi ∈ {0, 1, . . . , 255}. Every time we pass an image
through the flow f(·), the resulting latent representation z will be
different.

ization layers in train mode assign much lower likelihood to
out-of-distribution images than they do in evaluation mode,
while for in-distribution data the difference is not significant.
Our visualizations explain the presence of correlations in the
latent space as well as shed light on the difference between
the behaviour of the flows in train and test mode.

4. Transformations learned by coupling layers
To better understand the inductive biases of coupling-layer
based flows, we study the transformations learned by indi-
vidual coupling layers.

What are coupling layers trained to do? Each coupling
layer updates the masked part xchange of the input x to be
xchange ← (xchange + t(xid)) · exp(s(xid)), where xid is the
non-masked part of x, s and t are the outputs of the st-
network given xid (see Section A). The flow is encouraged
to predict high values for s since for a given coupling layer
the Jacobian term in the likelihood of Eq. (1) is given
by
∑

j s(xid)j (see Section 2). Intuitively, to afford large
values for scale s without making the latent representations
large in norm and hence decreasing the density term pZ(z)
in (1), the shift −t has to be an accurate approximation of
the masked input xchange. For example, in Figure 1(b, c)
the −t outputs of the first coupling layers are a very close
estimate of the input to the coupling layer. The likelihood
for a given image will be high whenever the coupling layers
can accurately predict masked pixels. To the best of our
knowledge, this intuition has not been discussed in any
previous work.

Observation: We describe two mechanisms
through which coupling layers learn to predict the
masked pixels: (1) leveraging local color correla-
tions and (2) using information about the masked
pixels encoded by the previous coupling layer (cou-
pling layer co-adaptation).
Significance for OOD detection: These mecha-
nisms allow the flows to predict the masked pix-
els equally accurately on in- and out-of-distribution
datasets. As a result, flows assign high likelihood to
OOD data.

4.1. Leveraging local pixel correlations

In Figure 3(a, b), we visualize intermediate coupling layer
activations of a small RealNVP model with 2 coupling lay-
ers and checkerboard masks trained on FashionMNIST. For
the masked inputs, the outputs of the st-network are shown
in black. Even though the flow was trained on FashionM-
NIST and has never seen an MNIST digit, the st-networks
can easily predict masked from observed pixels on both
FashionMNIST and MNIST. Figure 1 shows the same be-
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Figure 2. Latent spaces. Visualization of latent representations for RealNVP model on in-distribution and out-of-distribution inputs.
Panels 1-4: original images, latent representations, latent representation averaged over 40 samples of dequantization noise, and latent
representations for batch normalization in train mode for a flow trained on FashionMNIST and using MNIST for OOD data. Panels 5-8:
same for a model trained on CelebA with SVHN for OOD, but in panel 7 we show the blue channel of the latent representation from
panel 6 instead of an averaged latent representation. For both dataset pairs, we can recognize the shape of the input image in the latent
representations. The flow represents images based on their graphical appearance rather than semantic content.

(a) Checkerboard (b) Checkerboard, OOD (c) Horizontal (d) Horizontal, OOD

Figure 3. Coupling layers. Visualization of RealNVP’s intermediate coupling layer activations, as well as scales s and shifts t predicted
by each coupling layer on in-distribution (panels a, c) and out-of-distribution inputs (panels b, d). RealNVP was trained on FashionMNIST.
(a), (b): RealNVP with a standard checkerboard masks. The st-networks are able to predict the masked pixels well both on in-distribution
and OOD inputs from neighbouring pixels. (c), (d): RealNVP with a horizontal mask. Despite being trained on FashionMNIST, the
st-networks are able to correctly predict the bottom half of MNIST digits in the second coupling layer due to coupling layer co-adaptation.

haviour in the first coupling layers of RealNVP trained on
ImageNet.

With the checkerboard mask, the st-networks predict the
masked pixels from neighbouring pixels (see Appendix I
for a discussion of different masks). Natural images exhibit
local structure and correlations: with a high probability, a
particular pixel value will be similar to its neighbouring
pixels. The checkerboard mask creates an inductive bias for
the flow to pick up on these local correlations. In Figure 3,
we can see that the outputs of the s-network are especially
large for the background pixels and large patches of the
same color (larger values are shown with lighter color),
where the flow simply predicts that e.g. a pixel surrounded
by black pixels would itself be black.

In addition to checkerboard mask, RealNVP and Glow also
use channel-wise masks. These masks are applied after a

squeeze layer, which puts different subsampled versions of
the image in different channels. As a result, the st-network
is again trained to predict pixel values from neighbouring
pixels. We provide additional visualizations for RealNVP
and Glow in Appendix J.

4.2. Coupling layer co-adaptation
To better understand the transformations learned by the cou-
pling layers, we replaced the standard masks in RealNVP
with a sequence of horizontal masks, that cover one half
of the image (either top or bottom). For example, the first
coupling layer of the flow shown in panels (c, d) of Figure
3 transforms the bottom half of the image based on the top
half, the second layer transforms the top half based on the
bottom half and so on. In Figure 3(c, d) we visualize the cou-
pling layers for a 3-layer RealNVP with horizontal masks on
in-distribution (FashionMNIST) and OOD (MNIST) data.
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In the first coupling layer, the shift output −t of the st-
network predicts the bottom half of the image poorly and
the layer does not seem to transform the input significantly.
In the second and third layer, −t presents an almost ideal
reconstruction of the masked part of the image on both
the in-distribution and, surprisingly, the OOD input. It is
not possible for the st-network that was only trained on
FashionMNIST to predict the top half of an MNIST digit
based on the other half. The resolution is that the first layer
encodes information about the top half into the bottom half
of the image; the second layer then decodes this information
to make an accurate prediction of the top half. Similarly,
the third layer leverages information about the bottom half
of the image encoded by the second layer. We refer to this
phenomenon as coupling layer co-adaptation. Additional
visualizations are in Appendix J.

Horizontal masks allow us to conveniently visualize the cou-
pling layer co-adaptation, but we hypothesize that the same
mechanism applies to standard checkerboard and channel-
wise masks in combination with local color correlations.

Insights into prior work Prior work showed that the
likelihood score is heavily affected by the input complexity
(Serrà et al., 2019) and background statistics (Ren et al.,
2019), however, they did not explain why flows exhibit such
behavior. Simpler images (e.g. SVHN compared to CIFAR-
10) and background often contain large patches of the same
color, which makes it easy to predict masked pixels from
their neighbours and to encode and decode the information
via coupling layer co-adaptation.

5. Conclusion
Many of the puzzling phenomena in deep learning can be
boiled down to a matter of inductive biases. Neural networks
in many cases have the flexibility to overfit datasets, but they
do not because the biases of the architecture and training
procedures can guide us towards reasonable solutions. In
performing OOD detection, the biases of normalizing flows
can be more of a curse than a blessing. Indeed, we have
shown that flows tend to learn representations that achieve
high likelihood through generic graphical features and local
pixel correlations, rather than discovering semantic structure
that would be specific to the training distribution.

Following prior work (e.g., Nalisnick et al., 2018; Choi
et al., 2018; Nalisnick et al., 2019; Song et al., 2019a; Zhang
et al., 2020; Serrà et al., 2019), part of our discussion has
focused on an in-depth exploration of the popular class
of normalizing flows based on affine coupling layers. We
hypothesize that many of our conclusions about coupling
layers extend at a high level to other types of normalizing
flows (e.g., Behrmann et al., 2018; Chen et al., 2019; Finzi
et al., 2019; Karami et al., 2019; Grathwohl et al., 2018;

Papamakarios et al., 2017; Song et al., 2019b; Huang et al.,
2018; De Cao et al., 2019). A full study of these other types
of flows is a promising direction for future work.
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Appendix outline
This appendix is organized as follows.

• In Section A we provide background material on nor-
malizing flows and coupling layers.

• In Sectopm B we discuss related work.

• In Section C, we provide additional discussion and a
formal statement of the argument presented in Section
2.

• In Section D, we show that normalizing flows can be
trained to assign high likelihood to the target data and
low likelihood to a given OOD dataset.

• In Section E, we provide the hyperparameters that we
used for the experiments in this paper.

• In Section F, we report the log-likelihood histograms
and OOD detection AUROC scores for the baseline
RealNVP and Glow models on various datasets.

• In Section G, we explain the visualization procedure
that we use to visualize the latent representations and
coupling layers of normalizing flows.

• In Section H, we provide additional latent representa-
tion visualizations.

• In Section I, we explain the different masking strategies
for coupling layers of normalizing flows.

• In Section J, we provide additional coupling layer vi-
sualizations.

• In Section K we show that we can improve OOD de-
tection with flows by changing their architecture.

• In Section L, we provide additional details on the ex-
periments of Section K.

• In Section M, we provide samples from baseline mod-
els on various datasets. We also discuss an experiment
on resampling parts of the latent variables correspond-
ing to different images with normalizing flows.

• In Section N we show that when trained on high-level
features extracted by a CNN, flows can detect OOD
image data.

• In Section O, we provide additional details and results
for the experiments on image embeddings and tabular
data from Section N.

A. Background
We briefly introduce normalizing flows based on coupling
layers. For a more detailed introduction, see Papamakarios
et al. (2019) and Kobyzev et al. (2019).

Normalizing flows Normalizing flows (Tabak & Turner,
2013) are a flexible class of deep generative models that
model a target distribution p∗(x) as an invertible transfor-
mation f of a base distribution pZ(z) in the latent space.
Using the change of variables formula, the likelihood for an
input x and a dataset D is:

pX(x) = pZ(f
−1(x))

∣∣∣∣det ∂f−1∂x

∣∣∣∣ , p(D) =
∏
x∈D

pX(x).

(1)
The latent space distribution pZ(z) is commonly chosen to
be a standard Gaussian. Flows are typically trained by max-
imizing log-likelihood (1) of the training data with respect
to the parameters of the invertible transformation f .

Coupling layers In this work, we focus on normalizing
flows based on affine coupling layers. The transformation
performed by each layer is given by

f−1aff (xid, xchange) = (yid, ychange),{
yid = xid

ychange = (xchange + t(xid))� exp(s(xid))

(2)

where xid and xchange are disjoint parts of the input x, yid and
ychange are disjoint parts of the output y, and the scale and
shift parameters s(·) and t(·) are usually implemented by
a neural network (we will call it the st-network). The split
of the input into xid and xchange is defined by a mask: a cou-
pling layer transforms the masked part xchange = mask(x)
of the input based on the remaining part xid. The transfor-
mation (2) is invertible and allows for efficient Jacobian
computation in (1): log

∣∣∣det ∂f−1
aff

∂x

∣∣∣ =∑dim(xchange)
i=1 s(xid)i.

Flows with coupling layers The coupling layers can be
stacked together into flexible normalizing flows: f = fK ◦
fK−1 ◦ . . . ◦ f1. Examples of flows with coupling layers
include NICE (Dinh et al., 2014), RealNVP (Dinh et al.,
2016), Glow (Kingma & Dhariwal, 2018), and many others
(Bhattacharyya et al., 2020; Chen et al., 2020; Durkan et al.,
2019; Ho et al., 2019; Hoogeboom et al., 2019; Kim et al.,
2018; Ma et al., 2019; Prenger et al., 2019).

Out-of-distribution detection using likelihood Flows
can be used for out-of-distribution detection based on the
likelihood they assign to the inputs. One approach is to
choose a likelihood threshold ε on a validation dataset,
e.g. to satisfy a desired false positive rate, and during test
time identify inputs which have likelihood lower than ε as
OOD. Qualitatively, we can estimate the performance of
the flows for OOD detection by plotting a histogram of
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the log-likelihoods such as Figure 1(a): the likelihoods for
in-distribution data should be higher compared to OOD.
Alternatively, we can treat OOD detection as a binary clas-
sification problem using likelihood scores, and compute
accuracy with a fixed likelihood threshold ε, or AUROC
(area under the receiver operating characteristic curve).

B. Related Work
Recent works have shown that normalizing flows among
other deep generative models can assign higher likelihood
to out-of-distribution data (Nalisnick et al., 2018; Choi et al.,
2018). The work on OOD detection with deep generative
models falls into two distinct categories. In group anomaly
detection (GAD), the task is to label a batch of n > 1
datapoints as in- or out-of-distribution. In point anomaly
detection (PAD), anomalous data needs to be detected from
a single data point.

Group anomaly detection Nalisnick et al. (2019) intro-
duce the typicality test which distinguishes between a high
density set and a typical set of a distribution induced by
a model. However, the typicality test cannot detect OOD
data if it has a similar likelihood distribution to that of
in-distribution data. Song et al. (2019a) showed that out-
of-distribution datasets have lower likelihoods when batch
normalization statistics are computed from a current batch
instead of accumulated over the train set, and proposed a
test based on this observation. Zhang et al. (2020) intro-
duce a GAD algorithm based on measuring correlations
of flow’s latent representations corresponding to the input
batch. The main limitation of GAD methods is that for most
practical applications the assumption that the data comes in
batches of inputs that are all in-distribution or all OOD is
not realistic.

Point anomaly detection Choi et al. (2018) proposed to
estimate the Watanabe-Akaike Information Criterion using
an ensemble of generative models showing accurate OOD
detection on some of the challenging dataset pairs. Ren
et al. (2019) explain the poor OOD detection performance
of deep generative models by the fact that the likelihood is
dominated by background statistics. They propose a test
based on the ratio of the likelihoods for the image and back-
ground likelihood estimated using a separate background
model. Serrà et al. (2019) show that normalizing flows as-
sign higher likelihoods to simpler datasets and propose to
normalize flow’s likelihood by an image complexity score.

In this work we argue that it is the inductive biases of the
model that determine its OOD performance. Unlike the
prior work that mostly treated flows as black-box density
estimators, we conduct a careful study of the latent represen-
tations and image-to-latent-space transformations learned
by the flows. Throughout the paper, we connect our findings

with the previous works and provide new insights.

C. Maximum likelihood objective is agnostic
to what data is OOD

In Section 2 we argued that the maximum likelihood objec-
tive by itself does not define out-of-distribution detection
prefromance of a normalizing flow. Instead, it is the induc-
tive biases of the flow that define what data will be assigned
with high or low likelihood. We illustrate this point in Figure
4.

The yellow and red shaded regions illustrate the high-
probability regions of two distributions defined on the image
space X . The distribution in yellow assigns high likelihood
to the train (CelebA) images corrupted by a small level of
noise, or brightness adjustments. This distribution repre-
sents how a human could describe the target dataset. The
red distribution on the other hand assigns high likelihood
to all structured images including those from ImageNet and
SVHN, but does not support noisy train images. The red
distribution represents a distribution learned by normalizing
flow.

For simplicity, we could think that the distributions are uni-
form on the highlighted sets, and the sets have the same
volume. Then, both distributions assign equally high like-
lihood to the training data, but the split of the data into
in-distribution and OOD is different. As both distributions
provide the same density to the target data, the value of the
maximum likelihood objective in Equation (1) would be the
same for the corresponding models.

More generally, for any distribution that only assigns finite
density to the train set, we can construct another distribution
that assigns the same density to the train data, but also high
density to a given set of (OOD) datapoints. In particular,
the new distribution will achieve the same value of the
maximum likeihood objective in Equation (1). We formalize
our reasoning in the following simple proposition.

Proposition 1. Let p(·) be a probability density on the
space X , and let D = {xi}Ni=1 be the training dataset,
where xi ∈ X for i = 1, . . . , N . Assume for simplicity that
p is upper bounded: for any x p(x) ≤ u. Let DOOD be an
arbitraty finite set of points. Then, for any c ≥ 0 there exists
a distribution with density p′(·) such that p′(x) = p(x) for
all x ∈ D, and p′(x′) ≥ c for all x′ ∈ DOOD.

Proof. Consider the set S(r) = ∪xi∈DB(xi, r), where
B(x, r) is a ball of radius r centered at x. The probability
mass of this set P (S(r)) =

∫
x∈S(r) p(x)dx. As r → 0, the

volume V (S(r)) of the set S(r) goes to zero. We have

P (S(r)) =
∫
x∈S(r)

p(x)dx ≤ V (S(r)) · u r→0−−−→ 0. (3)
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Figure 4. Inductive biases define what data is OOD. A conceptual visualization of two distributions in the image space (shown in
yellow and red), training CelebA data is shown with crosses, and other images are shown with circles. The distribution shown in yellow
could represent inductive biases of a human: it assigns high likelihood to all images of human faces, regardless of small levels of noise,
and small brightness changes. The second distribution, shown in red, could represent a normalizing flow: it assigns high likelihood to all
smooth structured images, including images from SVHN and ImageNet. Both distributions assign the same likelihood to the training set,
but their high-probability sets are different.

Hence, there exists r0 such that P (S(r0)) ≤ 1
2 .

Now, define the a neighborhood of the set DOOD as

SOOD = ∪x′∈DOODB(x, r̂), (4)

where r̂ is selected so that the total volume of set SOOD
is 1/2c. Then, we can define a new density p′ by redis-
tributing the mass in p(·) from outside the set S(r0) to the
neighborhood SOOD as follows:

p′(x) =


p(x), if x ∈ S(r0),
2c ·

(
1− P (S(r0))

)
, if x ∈ SOOD,

0, otherwise.
(5)

The density p′(·) integrates to one, coincides with p on the
training data, and assigns density of at least c to points in
DOOD.

D. Flows have capacity to distinguish datasets
Normalizing flows are unable to detect OOD image data
when trained to maximize likelihood on the train set. It is
natural to ask whether these models are at all capable of
distinguishing different image datasets. In this section we
demonstrate the following:

Observation: Flows can assign high likelihood to
the train data and low likelihood to a given OOD
dataset if they are explicitly trained to do so.
Relevance to OOD detection: While flows have
sufficient capacity to distinguish different data, they
are biased towards learning solutions that assign
high likelihood to all structured data and conse-
quently fail to detect OOD inputs.

We introduce an objective that encouraged the flow to maxi-
mize likelihood on the target dataset and to minimize likeli-
hood on a specific OOD dataset. The objective we used is

1

ND

∑
x∈D

log p(x)− 1

NOOD

∑
x∈DOOD

log p(x)·I[log p(x) > c],

(6)
where I[·] is an indicator function and the constant c al-
lows us to encourage the flow to only push the likeli-
hood of OOD data to a threshold rather than decreas-
ing it to −∞; ND is the number of train datapoints and
NOOD =

∑
x∈DOOD

I[log p(x) > c] is the number of OOD
datapoints that have likelihood above the threshold c.

We trained a RealNVP flow with the objective (6) using
different pairs of target and OOD datasets: CIFAR-10
vs CelebA, CIFAR-10 vs SVHN and FashionMNIST vs
MNIST. We present the results in Figure 5. In each case, the
flow is able to push the likelihood of the OOD dataset to very
low values, and simultaneously maximize the likelihood on
the target dataset creating a clear separation between the
two.

Hyper-parameters For the flow architecture and training
used the same hyper-parameters as we did for the baselines,
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(a) CIFAR ↑, SVHN ↓ (b) SVHN ↑, CIFAR ↓ (c) CIFAR ↑, CelebA ↓ (d) CelebA ↑, CIFAR ↓

(e) Fashion ↑, MNIST ↓ (f) MNIST ↑, Fashion ↓

Figure 5. Negative training. The histograms of log-likelihood for RealNVP when in training likelihood is maximized on one dataset
and minimized on another dataset: (a) maximized on CIFAR, minimized on SVHN; (b) maximized on SVHN, minimized on CIFAR;
(c) maximized on CIFAR, minimized on CelebA; (d) maximized on CelebA, minimized on CIFAR. (e) maximized on FashionMNIST,
minimized on MNIST; (f) maximized on MNIST, minimized on FashionMNIST;

described in Appendix E. For CelebA, CIFAR and SVHN
models we set c = −100000, and for MNIST, FashionM-
NIST and NotMNIST we set c = −30000.

Connection with prior work Flows can be used as clas-
sifiers separating different classes of the same dataset (Nalis-
nick et al., 2019; Izmailov et al., 2020; Atanov et al., 2019),
which further highlights the fact that flows can distinguish
images based on their contents when trained to do so. A
similar experiment for the PixelCNN model (Oord et al.,
2016) was presented in Hendrycks et al. (2018). The au-
thors maximized the likelihood of CIFAR-10 and minimized
the likelihood of the TinyImages dataset (Torralba et al.,
2008). In their experiments, this procedure consistently led
to CIFAR-10 having higher likelihood than any of the other
benchmark datasets. In Figures 5, for each experiment in ad-
dition to the two datasets that were used in training we show
the log-likelihood distribution on another OOD dataset. For
example, when we train the flow to separate CIFAR-10 from
CelebA (panels c, d), the flow successfully does so but as-
signs SVHN with likelihood similar to that of CIFAR. When
we train the flow to separate CIFAR-10 from SVHN (panels
c, d), the flow successfully does so but assigns CelebA with
likelihood similar to that of CIFAR. Similar observations
can be made for MNIST, FashionMNIST and notMNIST.
At least for normalizing flows, minimizing the likelihood
on a single OOD dataset does not lead to all the other OOD
datasets achieving low-likelihood.

E. Details of the experiments
RealNVP For all RealNVP models, we generally follow
the architecture design of Dinh et al. (2016). We use multi-
scale architecture where after a block of coupling layers
half of the variables are factored out and copied forward
directly to the latent representation. Each scale consists of
3 coupling layers with checkerboard mask, followed by a
squeeze operation and 3 coupling layers with channel-wise
mask (see Figure 7). For the st-network we use deep convo-
lutional residual networks with additional skip connections
following Dinh et al. (2016). In all experiments, we use
Adam optimizer. On grayscale images (MNIST, FashionM-
NIST), we used 2 scales in RealNVP, 6 blocks in residual
st-network, learning rate 5×10−5, batch size 32 and trained
model for 80 epochs. On CIFAR-10, CelebA and SVHN,
we used 3 scales, 8 blocks in st-network, learning rate 10−4,
batch size 32, weight decay 5× 10−5 and trained the model
for 100 epochs. On ImageNet, we used 5 scales, 2 blocks in
st-network, learning rate 10−3, batch size 64, weight decay
5× 10−5 and trained the model for 42 epochs. On CelebA
64× 64, we used 4 scales, 4 blocks in st-network, learning
rate 10−4, batch size 64, weight decay 5× 10−5 and trained
the model for 100 epochs.

Glow We follow the training details of Nalisnick et al.
(2018) for multi-scale Glow models. Each scale consists
of a sequence of actnorm, invertible 1× 1 convolution and
coupling layers (Kingma & Dhariwal, 2018). The squeeze
operation is applied before each scale, and half of the vari-
ables are factored out after each scale. In all experiments,
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we use RMSprop optimizer. On grayscale images (MNIST,
FashionMNIST), we used 2 scales with 16 coupling layers,
a 3-layer Highway network with 200 hidden units for st-
network, learning rate 5× 10−5, batch size 32 and trained
model for 80 epochs. On color images (CIFAR-10, CelebA,
SVHN), we used 3 scales with 8 coupling layers, a 3-layer
Highway network with 400 hidden units for st-network,
learning rate 5× 10−5, batch size 32 and trained model for
80 epochs.

F. Baseline models likelihood distributions
and AUROC scores

In Figure 6, we plot the histograms of the log likelihoods on
in-distribution and out-of-distribution datasets RealNVP and
Glow models. In Table 1 we report AUROC scores for OOD
detection with these models. As reported in prior work,
Glow and RealNVP consistently fail at OOD detection.
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OOD data OOD data

Model Train data CelebA CIFAR-10 Data SVHN MNIST FashionMNIST NotMNIST

RealNVP
CelebA – 67.7 6.3 MNIST – 99.99 99.99

CIFAR-10 56.0 – 6.0 FashionMNIST 10.8 – 72.1
SVHN 99.0 98.4 –

Glow
CelebA – 69.1 6.4 MNIST – 99.96 100.0

CIFAR-10 52.9 – 5.5 FashionMNIST 13.3 – 80.2
SVHN 99.9 99.1 –

Table 1. Baseline AUROC. AUROC scores on OOD detection for RealNVP and Glow models trained on various image data. Flows
consistently assign higher likelihoods to OOD dataset except when trained on MNIST and SVHN. The AUROC scores for RealNVP and
Glow are close.
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Figure 6. Baseline log-likelihoods. The histograms of log-likelihood for RealNVP and Glow models trained on various datasets. Both
flows consistently assign similar or higher likelihood to OOD data compared to the target dataset. The likelihood distribution for train and
test sets of the target data is typically very similar.
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G. Visualization implementation
Normalizing flows such as RealNVP and Glow consist of
a sequence of coupling layers which change the content of
the input and squeeze layers (see Figure 7) which reshape
it. Due to the presence of squeeze layers, the latent repre-
sentations of the flow have a different shape compared to
the input. In order to visualize latent representations, we
revert all squeezing operations of the flow and visualize
unsqueeze(z). Similarly, for visualization of coupling
layer activations and scale and shift parameters predicted
by st-network, we revert all squeezing operations and join
all factored out tensors in the case of multi-scale architec-
ture (i.e., we feed the corresponding tensor through inverse
sub-flow without applying coupling layers or invertible con-
volutions).

H. Additional latent representation
visualizations

in Figure 8, we plot additional latent representations for
RealNVP and Glow trained on FashionMNIST with MNIST
as OOD dataset, RealNVP trained on CelebA with SVHN
as OOD. The results agree with Section 3: we can recognize
edges from the original inputs in their latent representations.

(a) Squeeze layer

(b) CB mask (c) CW mask (d) Hor. mask

Figure 7. Squeeze layers and masks. (a): A squeeze layer
squeezes an image of size c×h×w into 4c×h/2×w/2. The first
panel shows the mask, where each color corresponds to a channel
added by the squeeze layer (for visual clarity we show the mask
for a 12 × 12 image). The second panel shows a 1 × 28 × 28
MNIST digit, and the last panel shows the 4 channels produced
by the squeeze layer. The colors of the boundaries of the channel
visualizations correspond to the colors of the pixels in the mask.
Each channel produced by the squeeze layer is a subsampled ver-
sion of the input image. (b)-(d): Checkerboard, channel-wise and
horizontal masks applied to the same input image. Masked regions
are shown in red. Channel-wise mask is obtained by applying a
squeeze layer and masking two of the channels (e.g. the last two);
here we show the masked pixels in the un-squeezed image. Masks
are typically alternated: in the subsequent layers the masked and
observed positions are swapped.
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(c) RealNVP trained on CelebA

Figure 8. Latent spaces. Visualization of latent representations for RealNVP and Glow models on in-distribution and out-of-distribution
inputs. Rows 1-3 in (a) and (b): original images, latent representations, latent representation averaged over 40 samples of dequantization
noise for RealNVP and Glow model trained on FashionMNIST and using MNIST for OOD data. Row 4 in (a): latent representations for
batch normalization in train mode. Rows 1-4 in (c): original images, latent representations, the blue channel of the latent representation,
and the latent representations for batch normalization in train mode for a RealNVP model trained on CelebA and using SVHN as OOD
data. For both dataset pairs, we can recognize the shape of the input image in the latent representations. The flow represents images based
on their graphical appearance rather than semantic content.
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(a) RealNVP trained on FashionMNIST

(b) Glow trained on FashionMNIST

(c) RealNVP trained on CelebA

Figure 9. Coupling layer visualizations. Visualization of intermediate coupling layer activations and st-network predictions for (a):
RealNVP trained on FashionMNIST; (b): Glow trained on FashionMNIST; (c): RealNVP trained on CelebA. The top half of each
subfigure shows the visualizations for an in-distribution image (FashionMNIST or CelebA) while the bottom half shows the visualizations
for an OOD image (MNIST or SVHN). For all models, the shape of the input both for in- and out-of-distribution image is clearly visible
in s and t predictions of the coupling layers.
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I. Masking strategies
In Figure 7, we visualize checkerboard, channel-wise masks
and horizontal masks on a single-channel image. The
checkerboard and channel-wise masks are commonly used
in RealNVP, Glow and other coupling layer-based flows for
image data. We use the horizontal mask to better under-
stand the transformations learned by the coupling layers in
Section 4.

J. Additional coupling layer visualizations
In Figure 9, we plot additional visualizations of coupling
layer activations and scale s and shift t parameters predicted
by st-networks. In Figure 11 we visualize the coupling layer
activations for the small flow with horizontal mask from
Section 4.2 on several additional OOD inputs. These visu-
alizations provide additional empirical support for Section
4.

K. Changing biases in flow models for better
OOD detection

Our observations in Sections 3 and 4 suggest that normaliz-
ing flows are biased towards learning transformations that
increase likelihood simultaneously for all structured images.
We discuss two simple ways of changing the inductive bi-
ases:

By changing the masking strategy or the architec-
ture of st-networks in flows we can improve OOD
detection based on likelihood.

Changing masking strategy We consider two types of
masks. The horizontal mask has been introduced in Section
4.2: in each coupling layer the flow updates the bottom half
of the image based on the top half or vice versa. With a
horizontal mask, flows cannot simply use the information
from neighbouring pixels when predicting a given pixel, but
they exhibit coupling layer co-adaptation (see Section 4.2).
To combat coupling layer co-adaptation, we additionally
consider cycle-mask, a masking strategy where the informa-
tion about a part of the image has to travel through three
coupling layers before it can be used to update the same
part of the image (details in Appendix L.1). To compare
the performance of the checkerboard mask, horizontal mask
and cycle-mask, we construct flows of exactly the same size
and architecture (RealNVP with 8 coupling layers and no
squeeze layers) with each of these masks, trained on CelebA
and FashionMNIST. We present the results in the Appendix
L.1. As expected, for the checkerboard mask, the flow as-
signs higher likelihood to the simpler OOD datasets (SVHN
for CelebA and MNIST for FashionMNIST). With the hor-
izontal mask, the OOD data still has higher likelihood on
average, but the relative ranking of the in-distribution data

is improved. Finally, for the cycle-mask, on FashionMNIST
the likelihood is higher compared to MNIST on average. On
CelebA the likelihood is similar but slightly lower compared
to SVHN.

st-networks with bottleneck Another way to force the
flow to learn global structure rather than local pixel corre-
lations and to prevent coupling layer co-adaptation is to re-
strict the capacity of the st-networks. To do so, we introduce
a bottleneck to the st-networks: a pair of fully-connected
layers projecting to a space of dimension l and back to the
original input dimension. We insert these layers after the
middle layer of the st-network. If the latent dimension l is
small, the st-network cannot simply reproduce its input as
its output, and thus cannot exploit the local pixel correla-
tions discussed in Section 4. Passing information through
multiple layers with a low-dimensional bottleneck also re-
duces the effect of coupling layer co-adaptation. We train
a RealNVP flow varying the latent dimension l on CelebA
and on FashionMNIST. We present the results in Figure 10
and Appendix L. On FashionMNIST, introducing the bottle-
neck forces the flow to assign lower likelihood to OOD data
(Figure 10). Furthermore, as we decrease l, the likelihood of
the OOD data decreases but FashionMNIST likelihood stays
the same. On CelebA the relative ranking of likelihood for
in-distribution data is similarly improved when we decrease
the dimension l of the bottleneck, but SVHN is still assigned
slightly higher likelihood than CelebA. See Appendix L for
detailed results.

While neither of the proposed modifications completely re-
solves the issue of OOD data having higher likelihood, the
experiments show a trend that aligns with our observations
in Section 4. Preventing the flows from leveraging local
color correlations and coupling layer co-adaptation, we im-
prove the relative likelihood ranking for in-distribution data.

L. Details: changing biases in flow models for
better OOD detection

L.1. Cycle-mask

In Section 4 we identified two mechanisms through which
normalizing flows learn to predict masked pixels from ob-
served pixels on OOD data: leveraging local color corre-
lations and coupling layer co-adaptation. We reduce the
applicability of these mechanisms with cycle-mask: a new
masking strategy for the coupling layers illustrated in Figure
12.

With cycle-mask, the coupling layers do not have access
to neighbouring pixels when predicting the masked pixels,
similarly to the horizontal mask. Furthermore, cycle mask
reduce the effect of coupling layer co-adaptation: the in-
formation about a part of the image has to travel through
4 coupling layers before it can be used to update the same
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Figure 10. Effect of st-networks capacity. The histograms of log-likelihoods of in- and out-of-distribution data for RealNVP trained on
FashionMNIST varying the dimension l of the bottleneck in the st-networks. Flows with lower l work better for OOD detection: the
baseline assigns higher likelihood to the out-of-distribution MNIST images, while the flows with l = 50 and l = 100 assign significantly
higher likelihood to in-distribution FashionMNIST data.

Figure 11. Coupling layer co-adaptation. Visualization of intermediate coupling layer activations, as well as scales s and shifts t
predicted by each coupling layer of a RealNVP model with a horizontal mask on out-of-distribution MNIST inputs. Although RealNVP
was trained on FashionMNIST, the st-networks are able to correctly predict the bottom half of MNIST digits in the second coupling layer
due to coupling layer co-adaptation.

Transformed

Masked

Masked

Transformed

Masked Masked

Transformed Masked
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Figure 12. Cycle-mask. A new sequence of masks for coupling layers in RealNVP that we evaluate in Section K. We separate the input
image space of size c× h× w into four quadrants of size c× h/2× w/2 each. Each coupling layer transforms one quadrant based on
the previous quadrant. Cycle-mask prevents co-adaptation between subsequent coupling layers discussed in Section 4: the information
from a quadrant has to propagate through four coupling layers before reaching the same quadrant.

part of the image.

Changing masking strategy In Figure 13 we show the
log-likelihood histograms and samples for a RealNVP of a
fixed size with checkerboard, horizontal and cycle-mask.

Changing the architecture of st-networks In Figure 14,
we show likelihood distributions, samples and coupling
layer visualization for RealNVP model with st-network

with a bottleneck trained on FashionMNIST and CelebA
datasets. The considered bottleneck dimensions for Fashion-
MNIST are {10, 50, 100}, and for CelebA the dimensions
are {30, 80, 150}. In the baseline RealNVP model, we use
a standard deep convolutional residual network without ad-
ditional skip connections from the intermediate layers to the
output which were used in Dinh et al. (2016).
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Figure 13. Effect of masking strategy The first two rows show log likelihood distribution for RealNVP models trained on FashionMNIST
and CelebA with (a) checkerboard mask; (b) horizontal mask; and (c) cycle-mask. The third and the fourth rows show samples produced
by the corresponding models.
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(m) RealNVP with l = 10 trained on FashionMNIST

Figure 14. Effect of st-network capacity. The first row shows the histogram of log likelihoods for a RealNVP model trained on CelebA
dataset: (a) for a baseline model, and (b)-(d) for models with different bottleneck dimensions l in st-network. The second and third
rows show samples from RealNVP model trained on CelebA and FashionMNIST respectively: (e) and (i) for baseline models, and (f)-(h)
and (j)-(l) for models with different bottleneck dimensions l. In (m), we show the visualization of the coupling layer activations and
st-network predictions for a RealNVP model trained on FashionMNIST with a bottleneck of dimension l = 10. The top half shows the
visualizations for an in-distribution FashionMNIST image while the bottom half shows the visualizations for an OOD MNIST image.
st-network with restricted capacity cannot accurately predict masked pixels of the OOD image in the intermediate coupling layers.
Moreover, in the middle coupling layers for the MNIST input the activations resemble FashionMNIST images in s and t predictions.
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(a) RNVP, CelebA (b) RNVP, CIFAR-10 (c) RNVP, SVHN (d) RNVP, FashionMNIST

(e) RNVP, MNIST (f) RNVP, CelebA-HQ (g) RNVP, ImageNet (h) Glow, CelebA

(i) Glow, CIFAR-10 (j) Glow, SVHN (k) Glow, Fashion (l) Glow, MNIST

Figure 15. Baseline Samples. Samples from baseline RealNVP and Glow models. For ImageNet and CelebA-HQ we used datasets with
(64× 64) definition.

(a) Celeb-A (b) CIFAR-10 (c) SVHN

Figure 16. Latent variable resampling. Original images (top row) and reconstructions with the latent variables corresponding to a
10× 10 square in the center of the image randomly re-sampled for a RealNVP model trained on Celeb-A (bottom row). The model adds
faces (as it was trained Celeb-A) to the part of the image that is being re-sampled.
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M. Samples
In Figure 15, we show samples for RealNVP and Glow mod-
els trained on CelebA, CIFAR-10, SVHN, FashionMNIST
and MNIST, and a RealNVP model trained on ImageNet
64× 64 and CelebA 64× 64.

M.1. Latent variable resampling

To further understand the structure of the latent representa-
tions learned by the flow, we study the effect of resampling
part of the latent representations corresponding to images
from different datasets from the base Gaussian distribution.
In Figure 16, using a RealNVP model trained on CelebA
we compute the latent representations corresponding to in-
put images from CelebA, SVHN, and CIFAR-10 datasets,
and randomly re-sample the subset of latent variables corre-
sponding to a 10× 10 square in the center of the image (to
find the corresponding latent variables we apply the squeeze
layers from the flow to the 32× 32 mask). We then invert
the flow and compute the reconstructed images from the
altered latent representations.

Both for in-distribution and out-of-distribution data, the
model almost ideally preserves the part of the image other
than the center, confirming the alignment between the latent
space and the original input space discussed in Section 3.
The model adds a face to the resampled part of the image,
preserving the consistency with the background to some
extent.

N. Out-of-distribution detection using image
embeddings

In Section 2 we argued that in order to detect OOD data
the model has to assign likelihood based on high-level se-
mantic features of the data, which the flows fail to do when
trained on images. In this section, we test out-of-distribution
detection using image representations from a deep neural
network.

Normalizing flows can detect OOD images when
trained on high-level semantic representations in-
stead of raw pixels.

We extract embeddings for CIFAR-10, CelebA and SVHN
using an EfficientNet (Tan & Le, 2019) pretrained on
ImageNet (Russakovsky et al., 2015) which yields 1792-
dimensional features3. We train RealNVP on each of the
representation datasets considering the other two datasets as

3The original images are 3072-dimensional, so the dimension
of the embeddings is only two times smaller. Thus, the inabil-
ity to detect OOD images cannot be explained just by the high
dimensionality of the data.

OOD. We present the likelihood histograms for all datasets
in Figure 17(b). Additionally, we report AUROC scores in
Appendix Table 2. For the models trained on SVHN and
CelebA, both OOD datasets have lower likelihood and the
AUROC scores are close to 100%. For the model trained
on CIFAR-10, CelebA has lower likelihood and the likeli-
hood distribution on SVHN, while significantly overlapping
with CIFAR-10, still has a lower average; the AUROC score
between CIFAR-10 and SVHN is 73%. The OOD perfor-
mance on image embeddings is much better compared to
the flow models trained on the original image datasets. For
example, a flow trained on CelebA images assigns higher
likelihood to SVHN, while a flow trained on CelebA em-
beddings assigns low likelihood to SVHN embeddings (see
Appendix F for likelihood distribution and AUROC scores
on image data).

Non-image data In Appendix O we evaluate flows on
tabular UCI datasets, where the features are relatively high-
level compared to images. On these datasets, normalizing
flows assign higher likelihood to in-distribution data.

O. Out-of-distribution detection on tabular
data

O.1. Model

We use RealNVP with 8 coupling layers, fully-connected
st-network and masks which split input vector by half in an
alternating manner. For UCI experiments, we use 1 hidden
layer and 256 hidden units in st-networks, learning rate
10−4, batch size 32 and train the model for 100 epochs.
For image embeddings experiments, we use 3 hidden layer
and 512 hidden units in st-networks, learning rate 10−3,
batch size 1024 and train the model for 120 epochs. For all
experiments, we use the AdamW optimizer (Loshchilov &
Hutter, 2017) and weight decay 10−3.

O.2. EfficientNet embeddings

We train RealNVP model on image embeddings for CIFAR-
10, CelebA and SVHN extracted from EfficientNet train on
ImageNet, and report AUROC scores in Table 2(a).

O.3. UCI datasets

In this experiment, we use 2 UCI classification datasets
which were used for unsupervised modeling in prior works
on normalizing flows (Papamakarios et al., 2017; Durkan
et al., 2019; Grathwohl et al., 2018): HEPMASS (Baldi
et al., 2016) and MINIBOONE (Roe et al., 2005). HEP-
MASS and MINIBOONE are both binary classification
datasets originating from physics, and the two classes repre-
sent background and signal. We follow data preprocessing
steps of Papamakarios et al. (2017). We filter features which
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Figure 17. Image embeddings. Log-likelihood histograms for RealNVP trained on raw pixel data (first three panels) and embeddings
extracted for the same image datasets using EfficientNet trained on ImageNet. On raw pixels, the flow assigns the highest likelihood
to SVHN regardless of its training dataset. On image embeddings, flows always assign higher likelihood to in-distribution data. When
trained on features capturing the semantic content of the input, flows can detect OOD.

(a) Image embeddings

Train data OOD data

CelebA CIFAR-10 SVHN

CelebA – 99.99 99.99
CIFAR-10 99.99 – 73.31

SVHN 100.0 99.98 –

(b) Tabular data

Train class (OOD class) Dataset

HEPMASS MINIBOONE

Background class (Signal class) 83.78 72.71
Signal class (Background class) 70.73 87.56

Table 2. Image embedding and UCI AUROC. (a): AUROC scores on OOD detection for RealNVP model trained on image embeddings
extracted from EfficientNet. The model is trained on one of the embedding datasets while the remaining two are considered OOD. The
models consistenly assign higher likelihood to in-distribution data, and in particular AUROC scores are significantly better compared to
flows trained on the original images (see Table 1). (b): AUROC scores on OOD detection for RealNVP trained on one class of Hepmass
and Miniboone datasets while the other class is treated as OOD data.
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Figure 18. UCI datasets. The histograms of log-likelihood for RealNVP on Hepmass and Miniboone tabular datasets when trained on
one class and the other class is viewed as OOD. The train and test likelihood distributions are almost identical when trained on either
class, and the OOD class receives lower likelihoods on average. There is however a significant overlap between the likelihoods for in- and
out-of-distribution data.

have too many reoccurring values, after that the dimenional-
ity of the data is 15 for HEPMASS and 50 for MINIBOONE.
For HEPMASS, we use the “1000” dataset which contains
subset of particle signal with mass 1000. For MINIBOONE
data, for each class we take a random split of 10% for a test
set.

To test OOD detection performance, for each dataset we
train a model on one class while treating the second class
as OOD data. We plot the resulting train, test and OOD
likelihood distributions for each dataset in Figure 18. We
also report AUROC scores for each setup in Table 2(b).
While test and OOD likelihoods overlap, the in-distribution
class has higher average likelihood in all cases, and AU-

ROC values are ranging between 70% and 87% which is a
significantly better result compared to the results for image
benchmarks reported in Nalisnick et al. (2018).
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