
Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows

Ruizhi Deng 1 2 * Bo Chang 1 Marcus A. Brubaker 1 3 Greg Mori 1 2 Andreas Lehrmann 1

Abstract
Normalizing flows transform a simple base dis-
tribution into a complex target distribution and
have proved to be powerful models for data gen-
eration and density estimation. In this work, we
propose a novel type of normalizing flow driven
by a differential deformation of the Wiener pro-
cess. As a result, we obtain a rich time series
model whose observable process inherits many
of the appealing properties of its base process,
such as efficient computation of likelihoods and
marginals. Furthermore, our continuous treatment
provides a natural framework for irregular time
series with an independent arrival process, includ-
ing straightforward interpolation. We illustrate
the desirable properties of the proposed model
on popular stochastic processes and demonstrate
its superior flexibility to variational RNN and la-
tent ODE baselines in a series of experiments on
synthetic and real-world data.

1. Introduction
Expressive models for sequential data form the statistical
basis for downstream tasks in a wide range of domains,
including computer vision, robotics, and finance. Mean-
while, recent deep generative modeling has enabled vastly
increased flexibility while keeping generation and inference
tractable (Kingma & Welling, 2014; Chung et al., 2015;
Rezende & Mohamed, 2015; Kingma & Dhariwal, 2018;
Chen et al., 2018; Li et al., 2020).

In this work, we approach the modeling of continuous and
irregular time series with a reversible generative model for
stochastic processes. Our approach builds upon ideas from
normalizing flows; however, instead of a static base distribu-
tion, we transform a dynamic base process into an observ-
able one. In particular, we introduce the continuous-time

* Work done during an internship at Borealis AI. 1Borealis AI
2Simon Fraser University 3York University. Correspondence to:
Ruizhi Deng <ruizhid@sfu.ca>.

Second workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models (ICML 2020), Virtual Con-
ference

flow process (CTFP), a novel type of generative model that
decodes the base continuous Wiener process into a complex
observable process using a dynamic instance of normalizing
flows. The resulting observable process is thus continuous
in time. In addition to the appealing properties of static
normalizing flows (e.g., efficient sampling and exact like-
lihood), this also enables a series of inference tasks that
are typically unattainable in time series models with com-
plex dynamics, such as interpolation and extrapolation at
arbitrary timestamps. Furthermore, to overcome the simple
covariance structure of the Wiener process, we augment the
reversible mapping with latent variables and optimize this
latent CTFP variant using variational optimization.

Contributions. In summary, we propose the continuous-
time flow process (CTFP), a novel generative model for
continuous stochastic processes. It has the following appeal-
ing properties: (1) it induces flexible and consistent joint
distributions on arbitrary and irregular time grids, with easy-
to-compute density and an efficient sampling procedure; (2)
the stochastic process generated by CTFP is guaranteed to
have continuous sample paths, making it a natural fit for data
with continuously-changing dynamics; (3) CTFP can per-
form interpolation and extrapolation conditioned on given
observations. We validate our model and its latent variant
on various common stochastic processes and show supe-
rior performance than the state-of-the-art methods including
the variational recurrent neural network (VRNN) (Chung
et al., 2015) and latent ordinary differential equation (latent
ODE) (Rubanova et al., 2019).

2. Background: Wiener Processes
A stochastic process can be defined as a collection of
random variables that are indexed by time. An exam-
ple of continuous stochastic processes is the Wiener pro-
cess. The d-dimensional Wiener process Wτ can be char-
acterized by the following properties: (1) W0 = 0; (2)
Wt −Ws ∼ N (0, (t − s)Id) for s ≤ t, and Wt −Ws is
independent of past values ofWs′ for all s′ ≤ s. The joint
density of (Wτ1 , . . . ,Wτn) can be written as the product of
the conditional densities: p(Wτ1

,...,Wτn)
(wτ1 , . . . ,wτn) =∏n

i=1 pWτi
|Wτi−1

(wτi |wτi−1) for 0 ≤ τ1 < · · · < τn ≤
T .

The conditional distribution of pWt|Ws
, for s < t, is multi-

Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows

variate Gaussian; its conditional density is

pWt|Ws(wt|ws) = N (wt;ws, (t− s)Id), (1)

where Id is a d-dimensional identity matrix. This equa-
tion also provides a way to sample from (Wτ1 , . . . ,Wτn).
Furthermore, givenWt1 = wt1 andWt2 = wt2 , the condi-
tional distribution ofWt for t1 ≤ t ≤ t2 is also Gaussian:

pWt|Wt1 ,Wt2
(wt|wt1 ,wt2) =

N
(
wt;wt1+

t− t1
t2 − t1

(wt2−wt1),
(t2 − t)(t− t1)

t2 − t1
Id

)
.

(2)

This is known as the Brownian bridge. An important prop-
erty of the Wiener process is that the sample paths are contin-
uous in time with probability one. This property allows our
models to generate continuous sample paths and perform
interpolation and extrapolation tasks.

3. Model
We define our proposed continuous-time flow process
(CTFP) in Section 3.1. In Section 3.2, a generative vari-
ant of ANODE is presented as a component to implement
CTFP. Since the proposed stochastic process is continuous
in time, it enables interpolation and extrapolation to arbi-
trary time points, as described in Section 3.3. Finally, richer
covariance structures are enabled by the latent CTFP model
presented in Section 3.4.

3.1. Continuous-Time Flow Process

Let {(xτi , τi)}ni=1, denote a sequence of irregularly spaced
time series data. We assume the time series to be an (in-
complete) realization of a continuous stochastic process
{Xτ}τ∈[0,T]. In other words, this stochastic process in-
duces a joint distribution of (Xτ1 , . . . ,Xτn). Our goal is
to model {Xτ}τ∈[0,T] such that the log-likelihood on the
observations

L = log pXτ1
,...,Xτn

(xτ1 , . . . ,xτn) (3)

is maximized. We define the continuous-time flow process
(CTFP) {Fθ(Wτ ; τ)}τ∈[0,T] such that

Xτ = Fθ(Wτ ; τ), ∀τ ∈ [0, T], (4)

where Fθ(·; τ) : Rd → Rd is an invertible mapping
parametrized by the learnable parameters θ for every τ ∈
[0, T], andWτ is a d-dimensional Wiener process.

The log-likelihood in Equation 3 can be rewritten using the
change of variables formula. Letwτi = F−1θ (xτi ; τi), then

L =

n∑
i=1

[
log pWτi

|Wτi−1
(wτi |wτi−1)− log

∣∣∣∣det ∂xτi∂wτi

∣∣∣∣],
(5)

where τ0 = 0,W0 = 0, and pWτi
|Wτi−1

is defined in Sec-
tion 2. Figure 1a shows an example of the likelihood calcu-
lation. Sampling from a CTFP is straightforward. Given the
timestamps τi, we first sample a realization of the Wiener
process {wτi}ni=1, then map them to xτi = Fθ(wτi). Fig-
ure 1b illustrates this procedure.

The normalizing flow models Fθ(·; τ) transform simple
base distribution induced byWτ on arbitrary time grid into
more complex shapes in the observation space. It is worth
noting that given a continuous realization of Wτ , as long
as Fθ(·; τ) is implemented as a continuous mapping, the
resulting trajectory xτ is also continuous.

3.2. Generative ANODE

In principle, any normalizing flow model (Rezende & Mo-
hamed, 2015; Dinh et al., 2014; Kingma et al., 2016; Dinh
et al., 2017; Papamakarios et al., 2017; Kingma & Dhariwal,
2018; Behrmann et al., 2019; Chen et al., 2019; Kobyzev
et al., 2019; Papamakarios et al., 2019) indexed by time
τ could be used as Fθ(·; τ) in Equation 4. We proceed
with the continuous normalizing flow (Chen et al., 2018)
because it has free-form Jacobian and efficient trace esti-
mator (Grathwohl et al., 2019). In particular, we consider
the following instantiation of augmented neural ordinary
differential equation (ANODE) (Dupont et al., 2019) as a
generative model: For any τ ∈ [0, T] andwτ ∈ Rd, we map
wτ to xτ by solving the following initial value problem:

d

dt

(
hτ (t)
aτ (t)

)
=

(
fθ(hτ (t), aτ (t), t)

gθ(aτ (t), t)

)
,

(
hτ (t0)
aτ (t0)

)
=

(
wτ

τ

)
,

(6)

where hτ (t) ∈ Rd, t ∈ [t0, t1], fθ : Rd×R×[t0, t1]→ Rd,
and gθ : R× [t0, t1]→ R. Then Fθ in Equation 4 is defined
as the solution of hτ (t) at t = t1:

Fθ(wτ ; τ) := hτ (t1) = hτ (t0) +

∫ t1

t0

fθ (hτ (t), aτ (t), t) dt.

(7)

Note that the index t represents the independent variable in
the initial value problem and should not be confused with τ ,
the timestamp of the observation.

Using the Instantaneous Change of Variable theorem(Chen
et al., 2018), the log-likelihood L can be calculated as fol-
lows:

L =

n∑
i=1

[
log pWτi

|Wτi−1

(
hτi(t0)|hτi−1(t0)

)
−
∫ t1

t0

tr

(
∂fθ(hτi(t), aτi(t), t)

∂hτi(t)

)
dt

]
, (8)

where hτi(t0) is obtained by solving the ODE in Equation 6
backwards from t = t1 to t = t0, and the trace of the

Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows

(a) Likelihood calculation. (b) Sampling. (c) Interpolation and extrapolation.

Figure 1. (Latent) Continuous-Time Flow Processes (CTFPs). (a) Likelihood calculation. Given an irregular time series {xτi}, the
inverse flow F−1

θ maps the observations to a set of Wiener points {wτi} for which we can compute the likelihood according to Equation 5.
(b) Sampling. Given a set of timestamps {τi}, we sample a Wiener process and use the forward flow Fθ to obtain an observed process.
(c) Interpolation and extrapolation. In order to compute the density at an unobserved point xτ , we compute the left-sided (extrapolation;
Equation 1) or two-sided (interpolation; Equation 2) conditional density of its Wiener point wτ and adjust for the flow (Equation 9).
Notes: The effect of the latent variables Z in our latent CTFP model is indicated by red boxes. The shaded areas represent 70% and 95%
confidence intervals.

Jacobian can be estimated by Hutchinson’s trace estima-
tor (Hutchinson, 1990; Grathwohl et al., 2019).

3.3. Interpolation and Extrapolation with CTFP

Time-indexed normalizing flows and the Brownian bridge al-
low us to define conditional distributions on arbitrary times-
tamps. They also permit the CTFP model to perform inter-
polation and extrapolation given partial observations, which
are of great importance in time series modeling.

Interpolation means that we can model the conditional distri-
bution pXτ |Xτi

,Xτi+1
(xτ |xτi ,xτi+1

) for all τ ∈ [τi, τi+1]

and i = 1, . . . , n− 1. This can be done by mapping the val-
ues xτ , xτi and xτi+1 to wτ , wτi and wτi+1 , respectively.
After that, Equation 2 can be applied to obtain the condi-
tional density of pWτ |Wτ1 ,Wτ2

(wτ |wτ1 ,wτ2). Finally, we
have

log pXτ |Xτi
,Xτi+1

(xτ |xτi ,xτi+1
)

= log pWτ |Wτi
,Wτi+1

(wτ |wτi ,wτi+1
)−log

∣∣∣∣det ∂xτ∂wτ

∣∣∣∣ .
(9)

Extrapolation can be done in a similar fashion using Equa-
tion 1. This allows the model to predict continuous trajec-
tories into the future, given past observations. Figure 1c
shows a visualization of interpolation and extrapolation us-
ing CTFP.

3.4. Latent Continuous-Time Flow Process

The CTFP model inherits the independent increment prop-
erty from the Wiener process, which is a strong assumption
and limits its ability to model stochastic processes with
complex temporal dependence. In order to enhance the
expressive power of the CTFP model, we augment it with
a latent variable Z ∈ Rm, whose prior distribution is an
isotropic Gaussian pZ(z) = N (z; 0, Im). As a result, the
data distribution can be approximated by a diverse collection
of CTFP models conditioned on sampled latent variables z.

The generative model in Equation 4 is augmented toXτ =
Fθ(Wτ ;Z, τ),∀τ ∈ [0, T], which induces the conditional
distribution Xτ1 , . . . ,Xτn |Z. Similar to the initial value
problem in Equation 6, we define Fθ(wτ ; z, τ) = hτ (t1),
where

d

dt

(
hτ (t)
aτ (t)

)
=

(
fθ(hτ (t),aτ (t), t)

gθ(aτ (t), t)

)
,

(
hτ (t0)
aτ (t0)

)
=

(
wτ

(z, τ)>

)
.

(10)

For simplicity of notation, the subscripts of den-
sity functions are omitted from now on. For the aug-
mented generative model, the log-likelihood becomes L =
log
∫
Rm p(xτ1 , . . . ,xτn |z)p(z) dz, which is intractable

to evaluate. Following the variational autoencoder ap-
proach (Kingma & Welling, 2014), we introduce an ap-
proximate posterior distribution of Z|Xτ1 , . . . ,Xτn , de-
noted by q(z|xτ1 , . . . ,xτn). The implementation of the
approximate posterior distribution is an ODE-RNN en-

Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows

Table 1. Quantitative Evaluation (Synthetic Data). We show test negative log-likelihood on three synthetic stochastic processes across
different models. Below each process, we indicate the intensity of the Poisson point process from which the timestamps for the test
sequences were sampled. “Ground Truth” refers to the closed-form negative log-likelihood of the true underlying data generation process.
[GBM: geometric Brownian motion; OU: Ornstein–Uhlenbeck process; M-OU: mixture of OUs.]

Model GBM OU M-OU

λtest = 2 λtest = 20 λtest = 2 λtest = 20 λtest = (2, 20)

Latent ODE (Rubanova et al., 2019) 3.826 5.935 3.066 3.027 2.690
VRNN (Chung et al., 2015) 3.762 3.492 2.729 1.939 1.415
CTFP (ours) 3.107 1.931 2.903 1.942 1.432
Latent CTFP (ours) 3.106 1.929 2.902 1.936 1.391

Ground Truth 3.106 1.928 2.722 1.888 1.379

coder (Rubanova et al., 2019). With the approximate pos-
terior distribution, we can derive an importance-weighted
autoencoder (IWAE) (Burda et al., 2016) lower bound of
the log-likelihood on the right-hand side of the inequality:

LIWAE = Ezk∼q

[
log

(
1

K

K∑
k=1

p(xτ1 , . . . ,xτn |zk)p(zk)
q(zk|xτ1 , . . . ,xτn)

)]
,

(11)
where K is the number of samples from the approximate
posterior distribution.

4. Experiments
We apply our models on synthetic data generated from
common continuous-time stochastic processes. The pro-
posed CTFP and latent CTFP models are compared against
two baseline models: latent ODE (Rubanova et al., 2019)
and variational RNNs (VRNNs) (Chung et al., 2015). For
VRNNs, we append the time gap between two observations
as an additional input to the neural network. Both latent
CTFP and latent ODE models use ODE-RNN (Rubanova
et al., 2019) as the inference network; GRU (Cho et al.,
2014) is used as the RNN cell in latent CTFP, latent ODE,
and VRNN models.

We simulate three irregularly-sampled time series datasets;
all of them are univariate. Geometric Brownian motion
(GBM) is a continuous-time stochastic process widely used
in mathematical finance. It satisfies the following stochas-
tic differential equation: dXτ = µXτdτ + σXτdWτ . The
timestamps of the observations are in the range between 0
and T = 30 and are sampled from a homogeneous Poisson
point process with an intensity of λtrain = 2. To further eval-
uate the model’s capacity to capture the dynamics of GBM,
we test the model with observation time-steps sampled from
Poisson point processes with intensities of λtest = 2 and
λtest = 20. Ornstein–Uhlenbeck process (OU Process)
is another type of widely used continuous-time stochastic
process. The OU process satisfies the following stochastic
differential equation: dXτ = θ(µ −Xτ)dτ + σdWτ . We
use the same set of observation intensity values as GBM to

sample observation timestampes in the training and test sets.
Mixture of OUs. To demonstrate the latent CTFP’s capabil-
ity to model sequences sampled from different continuous-
time stochastic processes, we train the models on a dataset
generated by mixing the sequences sampled from two differ-
ent OU processes with different values of θ, µ, σ and differ-
ent observation intensities. We defer more details of model
implementation, the parameters of the synthetic dataset, and
experiment settings to the supplementary material.

Results. The results are presented in Table 1. We report
the exact negative log-likelihood (NLL) per observation
for CTFP. For latent ODE, latent CTFP, and VRNN, we
report the (upper bound of) NLL estimated by the IWAE
bound (Burda et al., 2016) in Equation 11, using K = 25
samples of latent variables.

The results on the test set sampled from GBM indicate that
the CTFP model can recover the true data generation pro-
cess as the NLL estimated by CTFP is close to the ground
truth. On the M-OU dataset, latent CTFP shows better per-
formance than other models and outperforms CTFP by 0.04
nats, indicating its ability to leverage the latent variables.
Although trained on samples with an observation intensity
of λtrain = 2, CTFP can better adapt to samples with a
bigger observation intensity (and thus denser time grid) of
λtest = 20. We hypothesize that the superior performance
of CTFP models when λtest = 20 is due to their capabil-
ity to model continuous stochastic processes, whereas the
baseline models do not have the property of continuity.

Figure 2 provides qualitative samples from CTFP model
trained on the GBM data, on the generation task (upper pan-
els) and the interpolation task (lower panels). In additional
to samples, we also show the the marginal density (blue) of
CTFP for each time stamp, and sample-based estimates of
the inter-quantile range (dark red) and mean (brown) of the
marginal density for both tasks. We compare the results of
CTFP with the samples and ground truth marginal density,
inter-quantile range, and mean of GBM. The comparison
shows the results of CTFP is consistent with the ground truth
in terms of both uncertainty estimate and point estimate.

Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

(a) CTFP

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

(b) GBM

Figure 2. Comparison between CTFP and GBM. We consider
the generation and interpolation tasks for (a) CTFP, and (b) GBM.
In each subfigure, the upper panel shows unconditional generation
samples and the lower panel shows samples for interpolation. The
observed points for interpolation are marked by black triangles. In
addition to the sample trajectories (red) and the marginal density
(blue), we also show the sample-based estimates (closed-form
for ground truth) of the inter-quantile range (dark red) and mean
(brown) of the marginal density.

References
Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D.,

and Jacobsen, J.-H. Invertible residual networks. In
International Conference on Machine Learning, pp. 573–
582, 2019.

Burda, Y., Grosse, R., and Salakhutdinov, R. Importance
weighted autoencoders. In International Conference on
Learning Representations, 2016.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. In Advances
in neural information processing systems, pp. 6571–6583,
2018.

Chen, T. Q., Behrmann, J., Duvenaud, D. K., and Jacobsen,
J.-H. Residual flows for invertible generative modeling.
In Advances in Neural Information Processing Systems,
pp. 9913–9923, 2019.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using rnn encoder–decoder for
statistical machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1724–1734, 2014.

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C.,
and Bengio, Y. A recurrent latent variable model for
sequential data. In Advances in neural information pro-
cessing systems, pp. 2980–2988, 2015.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-linear
independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using Real NVP. In International Conference on
Learning Representations, 2017.

Dupont, E., Doucet, A., and Teh, Y. W. Augmented neural
ODEs. In Advances in Neural Information Processing
Systems, pp. 3134–3144, 2019.

Grathwohl, W., Chen, R. T. Q., Bettencourt, J., and Du-
venaud, D. Scalable reversible generative models with
free-form continuous dynamics. In International Confer-
ence on Learning Representations, 2019.

He, J., Spokoyny, D., Neubig, G., and Berg-Kirkpatrick, T.
Lagging inference networks and posterior collapse in vari-
ational autoencoders. arXiv preprint arXiv:1901.05534,
2019.

Hutchinson, M. F. A stochastic estimator of the trace of the
influence matrix for laplacian smoothing splines. Com-
munications in Statistics-Simulation and Computation,
19(2):433–450, 1990.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. In Advances in Neural
Information Processing Systems, pp. 10215–10224, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In International Conference on Learning Repre-
sentations, 2014.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X.,
Sutskever, I., and Welling, M. Improved variational in-
ference with inverse autoregressive flow. In Advances in
neural information processing systems, pp. 4743–4751,
2016.

Kobyzev, I., Prince, S., and Brubaker, M. A. Normal-
izing flows: Introduction and ideas. arXiv preprint
arXiv:1908.09257, 2019.

Li, X., Wong, T.-K. L., Chen, R. T., and Duvenaud, D.
Scalable gradients for stochastic differential equations.
arXiv preprint arXiv:2001.01328, 2020.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation. In Advances in
Neural Information Processing Systems, pp. 2338–2347,
2017.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing flows for
probabilistic modeling and inference. arXiv preprint
arXiv:1912.02762, 2019.

Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International Conference on Ma-
chine Learning, pp. 1530–1538, 2015.

Rubanova, Y., Chen, T. Q., and Duvenaud, D. K. Latent or-
dinary differential equations for irregularly-sampled time
series. In Advances in Neural Information Processing
Systems, pp. 5321–5331, 2019.

A. Experiment Setup and Model Architecture
Details

We describe all the important details on synthetic dataset
generation, model architecture, as well as training and eval-
uation settings in this section.

A.1. Synthetic Dataset Details

For Geometric Brownian Motion (GBM), we sample 10000
trajectories from a GBM with the parameters of µ = 0.2 and
a variance of σ = 0.5 in the interval of [0, 30]. The times-
tamps of the observations are sampled from a homogeneous
Poisson point process with an intensity of λtrain = 2. We
evaluate the model on the observations timestamps sampled
from two homogeneous Poisson processes separately with
intensity values of λtest = 2 and λtest = 20.

For Ornstein–Uhlenbeck (OU) process, the parameters of
the process we sample trajectories from are θ = 2, µ = 1
and σ = 10. We also sample 10000 trajectories and use the
same set of observation intensity values, λtrain and λtest, to
sample observation timestamps from homogeneous Poisson
processes for training and test.

For Mixture of OU processes (MOU), we sample 5000
sequences from each of two different OU processes and mix
them. One OU process has the parameters of θ = 2, µ = 1,
and σ = 10 and the observation timestamps are sampled
from a homogeneous Poisson process with λ = 2. The other
OU process has the parameters of θ = 1.0, µ = 2.0 and
σ = 5.0 with observation timestamps sampled with λ = 20.

For the 10000 trajectories of each dataset, we use 7000
trajectories for training and 1000 trajectories for validation.
We test the model on 2000 trajectories for each value of
λtest.

A.2. Model Architecture Details

To ensure a fair comparison, we use the same values for im-
portant hyper-parameters like the latent variable and hidden
state dimensions across all models. Likewise, we keep the
underlying architectures as similar as possible and use the
same experimental protocol across all models.

For CTFP and Latent CTFP, we use a one-block augmented
neural ODE module that maps the base process to the ob-
servation space. In the augmented neural ODE model, we
use an MLP model consisting of 4 hidden layers of size
32–64–64–32 for both f and g in Equation 6 and 10.

For latent CTFP and latent ODE models, we use the same
ODE-RNN model as the recognition network. The ODE-
RNN model consists of a one-layer GRU cell with a hidden
dimension of 20 (the rec-dims parameter in its original im-
plementation) and a one-block neural ODE module that

Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows

has a single hidden layer of size 100, and it outputs a 10-
dimensional latent variable. The same architecture is used
by both latent ODE and latent CTFP models.

For the generation network of the latent ODE model, we
use an ODE function with one hidden layer of size 100.
The decoder network has 4 hidden layers of size 32–64–64–
32; it maps a latent trajectory to parameters of Gaussian
distributions at different time steps.

The VRNN model is implemented using a GRU network.
The hidden state of the GRU cell is 20-dimensional. The
dimension of the latent variable is 10. We use an MLP of 4
hidden layers of size 32–64–64–32 for the decoder network,
an MLP with one hidden layer that has the same dimen-
sion as the hidden state for the prior proposal network and
an MLP with two hidden layers for the posterior proposal
network.

For data sampled from Geometric Brownian Motion, we
apply an exponential activation function to the output of all
models. Therefore the distribution precited by latent ODE
and VRNN at each timestamp is a log-normal distribution.

A.3. Training and Evaluation Settings

We train all models using the IWAE bound with 5 samples
and a flat learning rate of 5× 10−4 for all models. We also
consider models trained with or without the aggressive train-
ing scheme proposed by He et al. (2019) for latent ODE and
latent CTFP. We choose the best-performing model among
the ones trained with or without the aggressive scheme based
IWAE bound, estimated with 25 samples on the validation
set for evaluation. The training batch size is 100 for CTFP
models and 25 for all the other models.

