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Abstract
We introduce normalizing flows for simultaneous
manifold learning and density estimation
(NOTAGAN or even shorter M-flows). This
new class of generative models simultaneously
learns the data manifold as well as a tractable
probability density on that manifold. Combining
aspects of normalizing flows, GANs, autoen-
coders, and energy-based models, M-flows
have the potential to represent datasets with a
manifold structure more faithfully.

1. Introduction
Inferring a probability distribution from example data is
a common problem that is increasingly tackled with deep
generative models. Both generative adversarial networks
(GANs) (Goodfellow et al., 2014) and variational autoen-
coders (VAEs) (Kingma & Welling, 2014) are based on a
lower-dimensional latent space and a learnable mapping to
the data space, in essence describing a lower-dimensional
data manifold embedded in the feature space. While they
allow for efficient sampling, their probability density (or
likelihood) is intractable, leading to a challenge for train-
ing and limiting their usefulness for inference tasks. On
the other hand, normalizing flows (Dinh et al., 2015; 2019;
Papamakarios et al., 2019; Rezende & Mohamed, 2015) are
based on a latent space with the same dimensionality as the
data space and a diffeomorphism; their tractable density
permeates through the full data space and is not restricted
to a lower-dimensional surface.

The flow approach may be unsuited to data that do not pop-
ulate the full ambient data space they natively reside in,
but are restricted to a lower-dimensional manifold (Fein-
man & Parthasarathy, 2019). Standard normalizing flows
by construction assign a non-zero probability density to ev-
ery point in the ambient space, they are thus not able to rep-
resent such a structure exactly and instead learn a smeared-
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Figure 1. Sketch of how a standard flow in the ambient data space
(left) and anM-flow (right) model data.

out version with support off the data manifold. We illus-
trate this in the left panel of Fig. 1. While flows have been
generalized from Euclidean spaces to Riemannian mani-
folds (Gemici et al., 2016), this approach has so far been
limited to the case where the chart for the manifold is pre-
scribed.

We introduce manifold-learning flows (M-flows): normal-
izing flows based on an injective, invertible map from a
lower-dimensional latent space to the data space.M-flows
simultaneously learn the shape of the data manifold, pro-
vide a tractable bijective chart, and learn a probability den-
sity over the manifold, as sketched in the right panel of
Fig. 1.

We discuss how this approach marries aspects of normal-
izing flows, GANs, autoencoders, and energy-based mod-
els (Arbel et al., 2020; Che et al., 2020; LeCun et al.,
2006). Compared to standard flow-based generative mod-
els, M-flows may more accurately approximate the true
data distribution, avoiding probability mass off the data
manifold. In addition, the model architecture naturally al-
lows one to model a conditional density that lives on a fixed
manifold. This should improve data efficiency in such sit-
uations as it is ingrained in the architecture and does not
need to be learned. The lower-dimensional latent space
may also reduce the complexity of the model, and the abil-
ity to project onto the data manifold provides dimensional-
ity reduction, denoising, and out-of-distribution detection
capabilities.

In this paper we summarize the main conceptual ideas and
findings. For in-depth discussions, additional results, and
implementation details, see a substantially extended ver-
sion of this paper at Ref. (Brehmer & Cranmer, 2020).
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2. Manifold-learning flows
Consider a true data-generating process that draws sam-
ples x ∈ M∗ ⊂ X = Rd according to x ∼ p∗(x),
where M∗ is a n-dimensional Riemannian manifold em-
bedded in the d-dimensional data space X and n < d. We
consider the two problems of estimating the density p∗(x)
as well as the manifold M∗ given some training samples
{xi} ∼ p∗(x). For simplicity, we treat the manifold as
topologically equivalent to Rn and assume that its dimen-
sionality n is known; we discuss how these simplifications
may be relaxed in the extended online version of this pa-
per (Brehmer & Cranmer, 2020).

Manifold-learning flow (M-flow). The M-flow model
is based on a latent space U = Rn, which corresponds to
the manifold coordinates, another latent space V = Rd−n,
which describes the off-the-manifold directions, and a dif-
feomorphism f : U × V 7→ X . We define the model man-
ifoldM through the level set

g : U 7→ M ⊂ X , u→ g(u) = f(u, 0) . (1)

In practice, we implement this transformation as a zero
padding followed by a series of invertible transformations,
g = fk ◦ · · · ◦ f1 ◦ Pad, where Pad denotes padding a
n-dimensional vector with d− n zeros.

The base density pu(u) is modeled with an n-dimensional
Euclidean normalizing flow h, which maps u to another
latent variable ũ with an associated tractable base density
pũ(ũ). The induced probability density on the manifold is
then given by

pM(x) = pũ(h
−1(g−1(x)))

∣∣det Jh(h−1(g−1(x)))∣∣−1
·
∣∣det[JTg (g−1(x))Jg(g−1(x))]∣∣− 1

2 . (2)

Sampling from an M-flow is straightforward: one draws
ũ ∼ pũ(ũ) and pushes the latent variable forward to the
data space as u = h(ũ) followed by x = g(u) = f(u, 0),
leading to data points on the manifold that consistently fol-
low x ∼ pM(x).

As a final ingredient to the M-flow approach, we add a
prescription for evaluating arbitrary points x ∈ X , which
may be off the manifold. g maps from a low-dimensional
latent space to the data space and is therefore a decoder. We
define a matching encoder g−1 as f−1 followed by a pro-
jection to the u component: g−1 : X 7→ U , x→ g−1(x) =
Proj(f−1(x)) with Proj(u, v) = u. This extends the in-
verse of g (which is so far only defined for x ∈ M) to the
whole data space X . Similar to an autoencoder, combin-
ing g and g−1 allows us to calculate a reconstruction error
‖x − x′‖ = ‖x − g(g−1(x))‖, which is zero if and only if
x ∈M. Unlike for standard autoencoders, the encoder and

decoder are exact inverses of each other as long as points
on the manifold are studied.

For an arbitrary x ∈ X , an M-flow thus lets us com-
pute three quantities: the projection onto the manifold
x′ = g(g−1(x)), which may be used as a denoised ver-
sion of the input; the reconstruction error ‖x − x′‖, which
will be important for training, but may also be useful for
anomaly detection or out-of-distribution detection; and the
likelihood on the manifold after the projection, pM(x′).
In this way, M-flows separate the distance from the data
manifold and the density on the manifold—two concepts
that easily get conflated in an ambient flow. M-flows em-
brace ideas of energy-based models for dealing with off-
the-manifold issues, but still have a tractable, exact likeli-
hood on the learned data manifold.

Manifold-learning flows with separate encoder
(Me-flow). We also introduce a variant of the M-flow
model where instead of using the inverse f−1 followed
by a projection as an encoder, we encode the data with a
separate function e : X 7→ U , x → e(x). This encoder
is not restricted to be invertible or to have a tractable
Jacobian, potentially increasing the expressiveness of the
network. Just as in the M-flow approach, for a given
data point x an Me-flow model returns a projected point
onto the learned manifold, a reconstruction error, and the
likelihood on the manifold evaluated after the projection.
The added expressivity of this encoder comes at the price
of potential inconsistencies between encoder and decoder,
which the training procedure will have to try to penalize,
exactly as for standard autoencoders.

3. Related work
Our work is closely related to a number of different prob-
abilistic and generative models. This includes normaliz-
ing flows in the ambient data space, which we will label as
ambient flows (AF) (Dinh et al., 2015; 2019; Papamakar-
ios et al., 2019; Rezende & Mohamed, 2015), as well as
flows on prescribed manifolds (FOMs) (Bose et al., 2020;
Gemici et al., 2016; Rezende et al., 2020), GANs (Good-
fellow et al., 2014), and VAEs (Kingma & Welling, 2014).
Here we want to highlight two particularly closely related
works:

Pseudo-invertible encoder (PIE). The PIE
model (Beitler et al., 2019) splits the latent variables
of an ambient flow into two types u and v with different
base densities and relies on the training to align one class
of latent variables with the manifold coordinates and the
other with the off-the-manifold directions. While the
density is very similar to that of an AF, the authors of
Ref. (Beitler et al., 2019) propose sampling from this
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AF: x (u, v)∼ puv
f

FOM: x u ũ ∼ pũ
g∗ h

GAN: x u ∼ pu
g

PIE: x (u, v)
u

v ∼ pv

ũ ∼ pũf Split h

M-flow: x (u, v) u ũ ∼ pũ
f Proj

Pad

h

g = f ◦ Pad

Me-flow: x (u, v) u ũ ∼ pũ
f

Pad
h

g = f ◦ Pad

e

Figure 2. Schematic relation between data x and various latent
variables u, v, ũ in different generative models. Red arrows show
learnable transformations, black arrows prescribed ones. Solid
lines denote invertible bijections, dashed lines invertible injec-
tions, dotted lines unrestricted transformations.

model by u ∼ pu(u) and applying x = f(u, 0), i. e. fixing
the off-the-manifold latents to v = 0. Note, however,
that the density defined by this sampling procedure is not
the same as the tractable density px(x). We use PIE as a
baseline our experiments.

Injective flows. Relaxed injective probability flows (Ku-
mar et al., 2020) are similar to our Me-flows. Instead of
using invertible flow transformations, they enforce the in-
vertibility of the decoder g by bounding the norm of the Ja-
cobian of an otherwise unrestricted transformation. While
this makes the transformation locally invertible, it does not
eliminate the possibility of multiple points in latent space
pointing to the same point in data space. Furthermore, the
inverse of g and the likelihood are not tractable for unseen
data points, limiting the usefulness for inference tasks. The
approaches also differ in the treatment of points off the
learned manifold and the training.

In Fig. 2 and Tbl. 1 we compare our new M-flows and
Me-flows to various other generative models.

4. Efficient training
Maximum likelihood is not enough. Since theM-flow
density is tractable, maximum likelihood is an obvious can-
didate for a training objective. However, the situation is
more subtle as theM-flow model describes the density af-
ter projecting onto the learned manifold. The definition

Model Manifold Chart Tractable density Restr. toM
AF no manifold × X ×
FOM prescribed X X X
GAN learned × × X
VAE learned × only ELBO (×)
PIE learned X X (×)
M-flow learned X X X
Me-flow learned X X X

Table 1. Comparison of generative models. The last column clas-
sifies models by whether their density is restricted to the mani-
fold; parantheses indicate an alternative sampling procedure that
can generate data restricted to the manifold, but which does not
correspond to the model density.

of the data variable in the likelihood hence depends on the
weights φf of the manifold-defining transformation f , and
a comparison of naive likelihood values between differ-
ent configurations of φf is meaningless. Instead of think-
ing of a likelihood function p(x|φf , φh), where φh are the
weights defining h, it is instructive to think of a family of
likelihood functions pφf

(x|φh) parameterized by the dif-
ferent φf .

Training M-flows by simply maximizing the naive like-
lihood p(x|φf , φh) therefore does not incentivize the net-
work to learn the correct manifold. As an extreme example,
consider a model manifold that is perpendicular to the true
data manifold. Since this configuration allows theM-flow
to project all points to a small region of high density on the
model manifold, this pathological configuration may lead
to a high naive likelihood value.

A second challenge is the computational efficiency of eval-
uating theM-flow density in Eq. (2). While this quantity is
in principle tractable, it cannot be computed as efficiently
as the likelihood of an ambient flow. The underlying reason
is that since the Jacobian Jg is not square, it is not obvious
how the determinant det JTg Jg can be decomposed further,
at least when we compose anM-flow out of the typical ele-
ments of ambient flows like coupling layers. Evaluating the
M-flow density then requires the computation of all entries
of the Jacobians of the individual transformation. While
this cost can be reasonable for the evaluation of a limited
number of test samples, it can be prohibitively expensive
during training. Since the computational cost grows with
increasing data dimensionality d, training by maximizing
log pM does not scale to high-dimensional problems.

Separate manifold and density training (M/D). We can
solve both problems at once by separating the training into
two phases. In the manifold phase, we update only the
parameters of f , which through a level set also define the
manifoldM and the chart g. Similarly to autoencoders, we
minimize the reconstruction error from the projection onto
the manifold, ‖x − g(g−1(x))‖. For theMe-flow model,
the parameters of the encoder e are also updated during this
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Model Polynomial surface Particle physics Images

Distance RE MMD Closure RE log p(θ∗)
n = 2 n = 64 n = 64 CelebA

FID FID log p(θ∗) FID

AF 0.005 – 0.071 0.0019 – −3.94 58.3 24.0 0.17 33.6
PIE 0.035 1.278 0.131 0.0023 2.054 −4.68 139.5 32.2 −6.40 75.7
M-flow 0.002 0.003 0.020 0.0045 0.012 −1.71 43.9 20.8 2.67 37.4
Me-flow 0.002 0.002 0.007 0.0046 0.029 −1.44 43.5 23.7 1.81 35.8

Table 2. Selected experimental results. Error bars are available in the online version of this paper (Brehmer & Cranmer, 2020).

phase. In the density phase, we update only the parameters
of h by maximum likelihood. h only affects the density pu,
we are thus keeping the manifold fixed during this phase.

Such a training procedure is not prone to the gradient
flow aligning the manifold with pathological configura-
tions. Moreover, training only h by maximum likelihood
does not require computing the expensive terms in the
model likelihood. The loss in the density phase is given
by the log of Eq. (2); only the last term in that equation is
expensive to evaluate, but it does not depend on the param-
eters of h and does not contribute to the gradient updates in
this phase! We can therefore train the parameters of h by
minimizing only the first two terms, which can be evaluated
efficiently.

Likelihood evaluation. For high-dimensional data, eval-
uating the likelihood in Eq. (2) can become so expensive
that even the likelihood evaluations at test time must be
limited. Several approximate inference techniques may re-
duce this computational cost. The issue can be side-stepped
entirely in the common case where the density (but not the
manifold) is conditional on some model parameters θ and
the downstream goal is inferring these model parameters θ.
In this case, the M-flow setup enables the fast and exact
computation of likelihood ratios and MCMC acceptance
probabilities.

5. Experiments
Datasets. We consider a variety of synethetic and real-
world datasets:

1. A two-dimensional manifold described by a polyno-
mial surface equation embedded in R3 with a Gaus-
sian mixture model.

2. The invariant probability measure of the Lorenz sys-
tem (Lorenz, 1963). This system of ordinary differen-
tial equations is known for its chaotic behaviour, with
many solutions of the system tending to a set that has
a Hausdorff dimension of approximately 2.06 (Guck-
enheimer & Sparrow, 1984; Viswanath, 2004).

3. Simulation-based (likelihood-free) inference (Cran-
mer et al., 2020) for a real-world particle physics prob-
lem, where observations populate a 14-dimensional
manifold embedded in R40.

4. Synthetic images on an n-dimensional manifold. We
generate them from a StyleGAN2 model (Karras et al.,
2019) trained on the FFHQ dataset (Karras et al.,
2018), keeping all but n of the GAN latent variables
fixed. We study one dataset with n = 2 and one with
n = 64, in both cases downsampling the images to a
resolution of 64× 64.

5. The real-world CelebA-HQ (Karras et al., 2018)
dataset, downsampled to a resolution of 64× 64.

Architectures. We study M-flow and Me-flow models
as well as AF and PIE baselines. All models are based on
rational-quadratic neural spline flows (Durkan et al., 2019).

Metrics. A common metric for flow-based models is the
likelihood evaluated on a test set, but such a comparison is
not meaningful in our context: since the M-flow variants
evaluate the likelihood after projecting to a learned mani-
fold, the data variable in the likelihood is different for ev-
ery model and the likelihoods of different models may not
even have the same units. Instead, we consider a range
of metrics that gauges the qualities of samples generated
from the different flows, including the distance to the true
data manifold in the polynomial surface dataset, a domain-
specific closure test for the particle physics problem, and
the Fréchet Inception Distance (FID) (Heusel et al., 2017;
Lucic et al., 2017) for the image datasets. The quality of the
manifolds learned by M-flow, Me-flow, and PIE models
is measured through the reconstruction error (RE) of pro-
jecting test samples to the learned manifolds. Finally, in
datasets where the density depends on some parameter θ,
we study inference on this parameter with MCMC based
on the flow likelihoods. We evaluate the models either
based on the maximum mean discrepancy (MMD) (Gretton
et al., 2012) between the approximate and true posterior, or
through the log posterior evaluated at the true parameter
point used to generate synthetic observations (log p(θ∗)).

Results. Table 2 shows a selection of metrics across the
four datasets. We find that M-flow and Me-flow models
learn manifolds of a higher quality than PIE, beat AF and
PIE baselines on some of the generative metrics, and out-
perform the baselines on all inference tasks. In Fig. 3 we
illustrate some of the learned models.
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Figure 3. Selected results. Left: Manifold and density for the Lorenz attractor as learned by anM-flow model. Middle: 2-D image
manifold learned by anM-flow model. Right: 64-D manifold test samples, their projection to the learned manifold, and residuals.

6. Conclusions
We introduced manifold-learning flows (M-flows), a new
type of generative model that combines aspects of nor-
malizing flows, autoencoders, and GANs. M-flows de-
scribe data with a tractable probability density over a lower-
dimensional manifold embedded in data space. Both the
manifold and the density are learned from data. We dis-
cussed how these models should be trained (hint: max-
imum likelihood alone is not enough) and demonstrated
their potential in a first range of experiments.

Problems in which data populate a lower-dimensional man-
ifold embedded in a high-dimensional feature space are al-
most everywhere. The manifold structure may be particu-
larly explicit in some scientific problems, while the success
of GANs on numerous datasets is testament to the pres-
ence of low-dimensional data manifolds in other domains.
Manifold-learning flows may help us unify generative and
inference tasks in a way that is well-suited to the structure
of the data.
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