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Abstract

For autonomous vehicles (AVs) to behave appro-
priately on roads populated by human-driven ve-
hicles, they must be able to reason about the in-
tentions and stochastic decisions of other drivers
given rich perceptual information. Towards these
capabilities, we present a deep probabilistic fore-
casting model of future intentions and interac-
tions of multiple agents. We design it to perform
both standard forecasting and conditional fore-
casting with respect to the AV’s goals. Condi-
tional forecasting reasons about how all agents
will likely respond to specific decisions of a
controlled agent. We train our model on real
and simulated data to forecast vehicle trajectories
given past positions and LIDAR. Our evaluation
shows that our model is substantially more accu-
rate in multi-agent driving scenarios compared to
existing state-of-the-art, even when restricting its
inputs to past positions alone.

1 Introduction
Autonomous driving requires reasoning about the future
behaviors of nearby agents, e.g. at stop signs, roundabouts,
crosswalks, or when parking. In multi-agent settings, each
agent’s behavior affects the behavior of others. Motivated
by people’s ability to reason in these settings, we present a
method to forecast multi-agent interactions from perceptual
data, such as images and LIDAR. Beyond forecasting the
behavior of all agents, we want our model to conditionally
forecast how other agents are likely to respond to different
decisions each agent could make. When planning a robot
to a goal, we want to forecast what other agents may do
in response. This reasoning is essential for agents to make
good decisions in multi-agent environments: they must rea-
son how their future decisions could affect the multi-agent
system. Examples of forecasting (Fig. 1) and conditional
forecasting (Fig. 2) on test data are shown. Videos avail-
able at https://sites.google.com/view/precog.
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Figure 1. Forecasting on nuScenes (Caesar et al., 2019). The in-
put to our model is a high-dimensional LIDAR observation, which
informs a distribution over all agents’ future trajectories.
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Figure 2. Conditioning the model on different Car 1 intentions
produces different predictions: here it forecasts Car 3 to move
if Car 1 yields space, or stay stopped if Car 1 stays stopped.
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We propose an efficient factorized generative model of joint
behavior conditioned on rich observations of the environ-
ment. Our contributions follow:

1. State-of-the-art multi-agent forecasting: We de-
velop a multi-agent forecasting model that uses exact
likelihood inference (unlike VAEs or GANs) to out-
perform three state-of-the-art forecasting methods in
real (nuScenes (Caesar et al., 2019)) and simulated
(CARLA (Dosovitskiy et al., 2017)) datasets.

2. Goal-conditioned multi-agent forecasting: Ours is
the first generative multi-agent forecasting method
that can condition on agent goals or intentions. Given
our model’s learned coupling of agent interactions,
conditioning on one agent’s intentions causes the pre-
dictions of other agents to change. Our factorized-
latent variables enable modelling decoupled agent in-
tentions even though agent dynamics are coupled.

3. Multi-agent imitative planning objective: We de-
rive a data-driven objective for safe motion planning
in multi-agent environments. It balances the likeli-
hood of reaching a goal with the probability that ex-
pert demonstrators would execute the same plan. We
use this objective for offline planning to known goals,
which further improves forecasting performance.

2 Related Work

Game-theoretic planning: Traditionally, multi-agent
planning and game theory approaches explicitly model
multiple agents’ policies or internal states, usually by gen-
eralizing Markov decision process (MDP) to multiple deci-
sions makers (Claus & Boutilier, 1998; Tan, 1993). These
frameworks facilitate reasoning about collaboration strate-
gies, but suffer from “state space explosion” intractability
except when interactions are sparse (Melo & Veloso, 2011).

Imitative forecasting: Data-driven approaches have been
applied to forecast complex interactions between pedestri-
ans (Alahi et al., 2016; Bartoli et al., 2017), vehicles (Deo
& Trivedi, 2018; Lee et al., 2017; Park et al., 2018), and
athletes (Le et al., 2017; Lee & Kitani, 2016). These “imi-
tative forecasting” methods generalize from previously ob-
served interactions to predict multi-agent behavior in new
situations. While these data-driven methods forecast multi-
agent scenarios as observers, controlled vehicles knowl-
ingly affect the multi-agent system, and must condition
their forecasts on their known controls.

Forecasting for control and planning: Generative models
for multi-agent forecasting and control have been proposed.
(Schmerling et al., 2018) which uses a conditional VAE en-
coding of the joint states of multiple agents to predict future
human actions. Our work differs by 1) using contextual in-
formation to generalize to new scenes, and 2) modelling
interactions between more than two vehicles jointly.

3 Deep Multi-Agent Forecasting

We consider scenarios in which the model may control one
of the agents (a “robot”). By modeling co-influence, our
robot’s trajectory are conditional on the (uncertain) future
human trajectories, and therefore future robots states are
necessarily uncertain.

3.1 Notation

We consider A agents (vehicles) that interact over T time
steps. We model all agent positions at time t as St ∈
RA×D, where D = 2. Sat represents agent a’s (x, y) co-
ordinates on the ground plane. We assume there is one
“robot agent” (e.g. the autonomous vehicle that our model
can control) and A−1 “human agents” (e.g. human drivers
that our model cannot control). For convenience, we define
Srt

.
= S1

t ∈ RD to index the robot state, and Sht
.
= S2:A

t ∈
R(A−1)×D to index the human states. Random variables
are capitalized and t= 0 defines the current time. Percep-
tion is given by φ .

= {s−τ :0,χ}, where τ is the number of
past multi-agent positions we condition on and χ is a high-
dimensional observation of the scene. LIDAR is provided
as χ = R200×200×2, with χij representing a 2-bin his-
togram of points above and at ground level in 0.5m2 cells.

3.2 Factorized Multi-Agent Forecasting

We propose a data-driven likelihood-based generative
model of multi-agent interaction to probabilistically predict
T -step dynamics of a multi-agent system: S ∼ q(S|φ;D),
where D is training data of observed multi-agent state tra-
jectories. Our model is generative, and learns to map latent
variables Z via an invertible function f to generate multi-
agent state trajectories conditioned on φ. f ’s invertibility
induces q(S|φ), a pushforward distribution (McCann et al.,
1995), also known as an invertible generative model (Dinh
et al., 2016). Invertible generative models can compute the
probability of joint multi-agent trajectories, critical to our
goal of planning. S is sampled from q as follows:

S = f(Z;φ) ∈ RT×A×D, Z ∼ N (0, I) ∈ RT×A×D. (1)

Our model is related to the R2P2 single-agent generative
model (Rhinehart et al., 2018), which we extend to the un-
certain multi-agent setting:

Sat = µaθ(S1:t−1, φ) + σaθ (S1:t−1, φ) · Zat ∈ RD, (2)

where µaθ(·) and σaθ (·) are neural network functions (with
trainable weights θ) outputting a one-step mean prediction
µat ∈ RD and standard-deviation matrix σat ∈ RD×D of
agent a, defining the system’s transition function q:

q(St|S1:t−1, φ) =

A∏
a=1

N (Sat ;µ
a
t ,σ

a
t σ

a>
t ), (3)

q(S|φ) =
T∏
t=1

q(St|S1:t−1, φ). (4)
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3.3 Model Implementation

Figure 3. We use latent variable Za
t+1 to represent variation in

agent a’s plausible scene-conditioned reactions to all agents St,
causing uncertainty in every agents’ future states S because they
interact. Variation exists because of unknown driver goals and
different recorded driving styles.

A high-level diagram of our implementation shown in
Fig. 3. Recall the context φ .

= {s−τ :0,χ}, containing the
past positions of all agents, s−τ :0, and a feature map χ,
implemented as LIDAR is mounted on the first agent. We
encode s−τ :0 with a GRU. A CNN processes χ to Γ at the
same spatial resolution as χ. Features for each agent’s pre-
dicted position Sat are computed by interpolating into Γ.

3.4 PREdictions Conditioned On Goals (PRECOG)

A distinguishing feature of our generative model for multi-
step, multi-agent prediction is its latent variables Z

.
= Z1:A

1:T

that factorizes over agents and time. Factorization makes it
possible to use the model for highly flexible conditional
forecasts. Since robots are not merely passive observers,
but one of potentially many agents, the ability to antici-
pate how they affect others is critical to their ability to plan
safely. Human drivers can appear to take highly stochastic
actions in part because we cannot observe their intentions.
In our model, the source of this uncertainty comes from
the latent variables Z ∼ N (0, I). In practical scenarios,
the robot knows its own intentions, can choose its own ac-
tions, and can plan a course of action to achieve a desired
goal. Recall from (2) that one-step agent predictions are
conditionally independent from each other give the previ-
ous multi-agent states. Therefore, certainty in the latent
state Zat corresponds to certainty of the ath agent’s reaction
to the multi-agent system at time t. Different values of Zat
correspond to different ways of reacting to the same infor-
mation. Deciding values of Zat corresponds to controlling
the agent a. We can therefore implement control of the
robot via assigning values to its latent variables Zr ← zr.
In contrast, human reactions Zht cannot be decided by the
robot, and so remain uncertain from the robot’s perspec-
tive and can only be influenced by their conditioning on
the robot’s previous states in S1:t−1. Therefore, to gener-
ate conditional-forecasts, we simply decide zr, sample Zh,
concatentate Z = zr ⊕ Zh, and warp S = f(Z, φ).

3.5 Multi-Agent Planning

We perform multi-agent planning by optimizing an objec-
tiveLw.r.t. the control variables zr, which allows us to pro-
duce the “best” forecasts under L. First, we chose a “goal
likelihood” function that represents the likelihood that a
robot reaches its goal G given state trajectory S. For in-
stance, the likelihood could be a waypoint w ∈ RD the
robot should approach: p(G|S, φ) = N (w;SrT , εI). Sec-
ond, we combine the goal likelihood with a “prior proba-
bility” model of safe multi-agent state trajectories q(S|φ),
learned from expert demonstrations. Note that unlike many
other generative multi-agent models, we can compute the
probability of generating S from q(S|φ) exactly, which is
critical to our planning approach. This results in a “poste-
rior” p(S|G, φ)we seek to maximize:

logEZh [p(S|G, φ)] ≥ EZh [log p(S|G, φ)] (5)
= EZh [log q(S|φ) · p(G|S, φ)]−log p(G|φ) (6)

L(zr,G) .= EZh [log q(S|φ) · p(G|S, φ)] (7)
= EZh [logq(f(Z)|φ)︸ ︷︷ ︸

multi-agent prior

+ log p(G|f(Z),φ)︸ ︷︷ ︸
goal likelihood

], (8)

where (5) follows by Jensen’s inequality. (6) follows from
Bayes’ rule and uses our learned model q as the prior. In
(8), we drop p(G|φ) because it is constant w.r.t. zr. Recall
Z = zr ⊕ Zh is the concatenation of robot and human
control variables. The robot can plan by optimizing zr∗ =
argmaxzr L(zr,G).

4 Experiments

4.1 Datasets

We generated a realistic dataset for multi-agent trajec-
tory forecasting and planning with the CARLA simulator
(Dosovitskiy et al., 2017). We ran the autopilot in Town01
for over 900 episodes of 100 seconds each in the presence
of 100 other vehicles, and recorded the trajectory of every
vehicle and the autopilot’s LIDAR observation. We ran-
domized episodes to either train, validation, or test sets.
We created sets of 60,701 train, 7586 validation, and 7567
test scenes, each with 2 seconds of past and 4 seconds
of future position information at 5Hz. We similarly used
the recently-released nuScenes data (Caesar et al., 2019), a
real-world dataset for multi-agent trajectory forecasting.

4.2 Metric

For sample metrics, we must take care not to penalize the
distribution when it generates plausible samples different
than the expert trajectory. We extend the “minMSD” metric
(Lee et al., 2017; Park et al., 2018; Rhinehart et al., 2018)
to measure quality of joint trajectory samples. In contrast
to the commonly-used average displacement error (ADE)
and final displacement error (FDE) metrics that computes
the mean Euclidean error from a batch of samples to a
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single ground-truth sample (Alahi et al., 2016; Pellegrini
et al., 2009), minMSD has the desirable property of not pe-
nalizing plausible samples that correspond to decisions the
agents could have made, but did not.

m̂K
.
= ES∗ min

k∈{1..K}
||S∗−S(k)||2/(TA),S(k) iid∼ q(S|φ), (9)

We denote per-agent error of the best joint trajectory with
m̂a
K
.
= ES∗ ||S∗a−Sa,(k

†)||2/T , k† .= argmin
k∈{1..K}

||S∗−S(k)||2.

4.3 Baselines

SocialGAN (Gupta et al., 2018) proposed a conditional
GAN multi-agent forecasting model that observes the past
trajectories of all modeled agents, but not χ. We used the
authors’ public implementation. In contrast to SocialGAN,
we model joint trajectories and can compute likelihoods.

DESIRE (Lee et al., 2017) proposed a conditional VAE
model that observes past trajectories and visual context. We
followed the implementation as described.

R2P2 (Rhinehart et al., 2018) proposed a likelihood-based
conditional generative forecasting model for single-agents.
We extend R2P2 to the multi-agent setting and use it as
our No-Influence model which assumes independent (non-
interactive) agents: q(S|φ) =

∏A
a=1 q

a(Sa|φ).

4.4 Multi-Agent Forecasting Experiments

Table 1. CARLA and nuScenes multi-agent forecasting evalua-
tion. Mean scores (and their standard errors) of sample quality
m̂K=12 (9) are shown. Our methods are highlighted gray.

Town01 Test 2 agents 3 agents 4 agents 5 agents
DESIRE 1.656± 0.038 1.684± 0.031 2.425± 0.038 2.599± 0.029
SocialGAN 0.842± 0.024 1.037± 0.030 1.386± 0.041 1.464± 0.028
No-Influence (R2P2∗) 0.430± 0.016 0.594± 0.015 0.753± 0.015 0.843± 0.014
Ours: Co-Influ., no LIDAR 0.783± 0.022 0.815± 0.020 1.096± 0.020 1.213± 0.019
Ours: Co-Influence 0.335 ± 0.013 0.430 ± 0.013 0.659 ± 0.013 0.716 ± 0.012

nuScenes Test 2 agents 3 agents 4 agents 5 agents
DESIRE 3.473± 0.102 4.421± 0.130 5.957± 0.162 6.575± 0.198
SocialGAN 2.119± 0.087 3.033± 0.110 3.484± 0.129 3.871± 0.148
No-Influence (R2P2∗) 1.336± 0.062 2.055± 0.093 2.695± 0.100 3.311± 0.166
Ours: Co-Influ., no LIDAR 1.496± 0.069 2.240± 0.084 3.201± 0.113 3.442± 0.139
Ours: Co-Influence 1.325 ± 0.065 1.705 ± 0.089 2.547 ± 0.095 3.266 ± 0.155

Left Front Right

Figure 4. Multi-agent forecasting with our learned Co-Influence
model. In each scene, 12 joint samples are shown, and LIDAR
colors are discretized to near-ground and above-ground. Left:
(CARLA) the model predicts Car 1 could either turn left or right.
Right: (nuScenes) Car 2 is predicted to overtake Car 1.

Tab. 1 shows the multi-agent forecasting results. Our mod-
els generally achieves outperform prior work. We also ab-
lated our model’s access toχ (“Co-Influence, no LIDAR”),
for fairer comparison to SocialGAN w.r.t. model inputs.
Qualitative examples of our forecasts are shown in Fig. 4:
note the model properly predicts diverse plausible paths at
intersections, and social behavior where one car will wait
for another before accelerating.

4.5 Goal-Conditional Forecasting Experiments

We also investigate whether robot goal-conditioning gen-
erates more plausible joint futures of all agents. Unlike
the previous unconditional forecasting scenario, when the
robot is using the Co-Influence model for planning, it
knows its own goal. We can simulate planning by assum-
ing the goal was the state that the robot actually reached
at t = T , and then planning a path from the current time
step to the goal position. We report results of our planning
experiments in Tab. 2. Whilst forecasting performance im-
prove for the controlled (robot) agent is expected (m̂1

K),
more interestingly: the forecasting performance of the un-
controlled other agents (m̂2

K and m̂3
K) also improve. Qual-

itative examples are shown in Fig. 5.

Table 2. Forecasting evaluation of our model on CARLA Town01
Test data. Planning the robot to a goal position enables better
predictions for all agents. Means and standard errors reported.

Data Approach Test m̂K=12 Test m̂a=1
K=12 Test m̂a=2

K=12 Test m̂a=3
K=12

CARLA Forecast 0.718± 0.012 0.340± 0.011 0.759± 0.024 0.809± 0.025
PRECOG 0.640± 0.011 0.066± 0.003 0.741± 0.024 0.790± 0.024

nuScenes Forecast 2.921± 0.175 1.861± 0.109 2.369± 0.188 2.812± 0.188
PRECOG 2.508 ± 0.152 0.149 ± 0.021 2.324 ± 0.187 2.654 ± 0.190

(a) Forecasted (b) Planned

Figure 5. Examples of planned multi-agent forecasting with our
learned model in CARLA. By using our planning approach and
conditioning the robot on its true final position, our predictions
for the robot become more accurate, and often our predictions of
the other agent become more accurate.

5 Conclusions

We present a multi-agent forecasting method that outper-
forms state-of-the-art multi-agent forecasting methods on
real (nuScenes) and simulated (CARLA) driving data. Our
novel ability to condition forecasts on the robot’s intentions
demonstrated further improvement.
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