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Abstract
We show that invertible neural networks can be
constructed using masked convolutions, with ar-
chitectures similar to ResNets. Their inverses can
be easily obtained by sequentially inverting uni-
variate monotonic functions. The determinants
of Jacobians can be computed analytically, en-
abling generative modeling based on the change
of variables formula. We empirically demon-
strate that these invertible neural networks can
perform competitively with ResNets on classify-
ing CIFAR-10 images. When trained as gener-
ative models, our invertible neural networks are
able to set a new state-of-the-art record of like-
lihood on MNIST and match the state-of-the-art
likelihood on CIFAR-10.

1. Introduction
Invertible neural networks provide a unique tool to under-
standing and tackling problems in classification and gener-
ative modeling. They have been employed to investigate
representations of deep classifiers (Jacobsen et al., 2018),
create generative models that are directly trainable by max-
imum likelihood (Dinh et al., 2016; 2015; Papamakarios
et al., 2017; Kingma & Dhariwal, 2018; Grathwohl et al.,
2018; Behrmann et al., 2019), and do approximate infer-
ence (Rezende & Mohamed, 2015; Kingma et al., 2016).

There are two important desiderata for invertible neural
networks. First, there should exist efficient algorithms for
inverting the network. Second, the determinant of the Jaco-
bian should be tractable to enable applications in generative
models. Many methods have been proposed to construct
models that are both invertible and have tractable determi-
nants of Jacobians. For example, planar flows (Rezende &
Mohamed, 2015) and Sylvester flows (Berg et al., 2018) all
have tractable determinants of Jacobians by design, but they
have bottlenecks in the architecture that limit the largest di-
mension of hidden representations. NICE (Dinh et al., 2015),
realNVP (Dinh et al., 2016) and Glow (Kingma & Dhari-
wal, 2018) also have tractable Jacobians. However, they
rely on fixed dimension splitting heuristics and unorthodox
architectures such as the coupling layers, which could make
training and tuning harder. Methods like FFJORD (Grath-
wohl et al., 2018), i-ResNets (Behrmann et al., 2019) have

less constrains on the architectures. Unfortunately, their
Jacobian determinants can only be approximated.

In this paper, we propose a new invertible network based on
masked convolutions. This new family of models, named
MinvNets, can be efficiently inverted by sequentially solving
univariate equations, and their Jacobian determinants can
be analytically computed. The architecture of MinvNet is
similar to that of ResNet—the state-of-the-art architecture
of discriminative learning, which arguably facilitates the
learning of expressive features and deep models. Empiri-
cally, we found that a MinvNet classifier achieves 90.2%
accuracy on CIFAR-10, which is comparable to the 92.6%
accuracy achieved by a ResNet with a similar architecture.
When using MinvNets as generative models, it achieves a
bit per dimension (bpd) of 0.98 on MNIST, outperform-
ing the former state-of-the-art (0.99 from FFJORD (Grath-
wohl et al., 2018)). On CIFAR-10, the bpd of MinvNet is
3.35, which is the same as state-of-the-art result achieved
by Glow (Kingma & Dhariwal, 2018).

2. Background
2.1. Understanding classification with invertible neural

networks

Enforcing the invertibility of a neural network leads to more
interpretable classifiers. Before invertible neural networks
were invented, in order to understand what input leads to a
specific label, prior work (Dosovitskiy & Brox, 2016; Ma-
hendran & Vedaldi, 2016) inverted the representations by
means of learned or hand-engineered priors. For invertible
neural networks, it is easy to trace down a prediction by
inverting the final representations. This has been shown
useful for understanding distributions of latent features (Ja-
cobsen et al., 2018) and analyzing the cause of adversarial
examples (Jacobsen et al., 2019).

2.2. Generative modeling with invertible neural
networks

An invertible neural network f : x ∈ Rn 7→ z ∈ Rn

can be used to map a usually complex probability density
p(x) to a simple base distribution π(z). The change of
variable formula relates the densities before and after the
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transformation, i.e.,

p(x) = π(f(x)) log

∣∣∣∣det(∂f∂x
)∣∣∣∣, (1)

where ∂f
∂x denotes the Jacobian of f(x). If the Jacobian

determinant det(∂f∂x ) is tractable, p(x) can be easily com-
puted given f(x), using the above formula. Therefore f(x)
can be used to represent a probability density p(x). In ad-
dition, samples from p(x) can be obtained by first drawing
z ∼ π(z), and then computing the inverse f−1(z).

3. Constructing Invertible Layers with
Masked Convolutions

3.1. The basic invertible module

We start from considering linear transformations f(x) =
Wx + b, W ∈ Rn×n, b ∈ Rn. Obviously f is invert-
ible as long as W is not singular. However, for a general
W , computing its inverse and determinant requires O(n3)
operations. For more efficient inversion and determinant
computation, we choose W to be a triangular matrix with
nonzero diagonal entries. The function f(x) =Wx+ b is
our basic invertible module.

Because W is triangular, f(x) can be efficiently inverted
with forward / backward substitution, which only costs
O(n2) computations. For example, suppose W is lower
triangular and consider computing x = f−1(y), i.e., solv-
ing the following linear system

W11x1 = y1 − b1
W21x1 + W22x2 = y2 − b2

...
...

. . .
...

Wn1x1 + Wn2x2 + · · · + Wnnxn = yn − bn

.

The solution for x1, x2, · · · , xn can be obtained sequen-
tially. We first solve for x1 using the first equation
W11x1 + b1 = y1. The second equation only involves
x1 and x2, so x2 can be solved because we already know x1.
Continuing in this way, xk can be solved given the values
of x1, x2, · · · , xk−1.

Moreover, the determinant of Jacobian for f(x) only re-
quires O(n) computations, since the Jacobian is W , and
the determinant of a triangular matrix is the product of its
diagonal entries.

3.2. The calculus of invertible modules

More complex and expressive invertible functions can be
constructed from our basic invertible module. Without loss
of generality, we assume the weight matrix W of our basic
block is lower triangular. We will consider three composi-
tion rules as our tools of building more expressive invertible

functions. These composition rules preserve the property
of triangular Jacobians so that the Jacobian determinants of
the composed modules are easy to compute. We will next
discuss additional constraints needed to make the composed
modules invertible.

We already know that f(x) =Wx+b has a lower triangular
Jacobian. New modules with lower triangular Jacobians can
be created with the following composition rules.

• Addition. If f1 and f2 have lower triangular Jacobians,
we can build a new module by f = f1 + f2. The
Jacobian of f satisfies ∂f

∂x = ∂f1
∂x + ∂f2

∂x , and is therefore
lower triangular.

• Non-linearity. If f0 has a lower triangular Jacobian,
a new module can be created by f(x) = h(f0(x)),
where h(·) is an elementwise activation function that
transforms the output of f0. The Jacobian of f is still
lower triangular, because ∂f

∂x = diag(h′(f0(x)))
∂f0
∂x .

Here diag(v) represents a diagonal matrix with v on
the diagonal.

• Composition. If f1 and f2 have lower triangular Ja-
cobians, we can create a new module by f = f2 ◦ f1.
The Jacobian of f is ∂f

∂x = ∂f2
∂x

∣∣
x=f1(x)

∂f1
∂x , and is also

lower triangular.

Next, we state the sufficient condition for a module with
a lower triangular Jacobian to be invertible. Let the func-
tion be f : Rn → Rn, and denote the Jacobian of f at
x as Jf (x). We use diag(Jf (x)) to denote the diagonal
of Jf (x), and all inequalities are considered elementwise.
The condition for f being invertible is summarized as the
following theorem.

Theorem 1. If the following conditions hold for ∀x ∈ Rn:
(i) Jf (x) is lower triangular; (ii) diag(Jf (x)Jf (0)) > 0,
then f is invertible. Moreover, x = f−1(y) can be obtained
by sequentially inverting n univariate monotonic functions.

Proof. See the appendix.

In other words, the new modules created by the rules of addi-
tion, non-linearity or composition will be invertible as long
as each diagonal entry of their Jacobians has the same sign
across all the inputs. When this condition is satisfied, the
inverse can be obtained efficiently using a procedure similar
to forward substitution of the basic invertible module. Note
that univariate monotonic functions can be inverted effi-
ciently, using—for example—the Newton-Raphson method.

3.3. The invertible layer

Using the basic blocks and composition rules, we can
construct an expressive invertible module whose inver-
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sion and determinant of Jacobian can be efficiently com-
puted. The invertible layer includes 3 groups of basic in-
vertible modules on Rn, whose weights are {(W 1

i ,b
1
i )}|ki=1,

{(W 2
ij ,b

2
ij)}|1≤i,j≤k, and {(W 3

i ,b
3
i )}|ki=1. In addition, the

invertible layer also uses an activation function h, which we
assume to be strictly increasing. All matrices involved are
lower triangular.

We define our layer as

`(x) ,
k∑

i=1

W 3
i h

( k∑
j=1

W 2
ijh(W

1
j x+ b1

j ) + b2
ij

)
+ b3

i ,

which resembles the form of a 3-layer neural network with
k hidden units. By the composition rules in Section 3.2,
`(x) has a lower triangular Jacobian. The analytic form of
the Jacobian is

J`(x) =

k∑
i=1

W 3
i αi

k∑
j=1

W 2
ijβjW

1
j ,

where αi = h′
(∑k

j=1W
2
ijh(W

1
j x+ b1

j ) + b2
ij

)
and βj =

h′(W 1
j x+b1

j ). Note that αi and βj are all positive because
h is strictly increasing and h′ > 0. Therefore, the condition
of Theorem 1 can be satisfied when

diag(W 3
i ) diag(W

2
ij) diag(W

1
j ) > 0,∀1 ≤ i, j ≤ k, (2)

in which case diag(J`(x)) > 0 is guaranteed for all x ∈ Rn.
Since Eq. (2) only involves the diagonal terms of weight
matrices, it only affects 2

n+1 of all variables and is arguably
negligible when n is large.

As a result, when the constraints of diagonals in Eq. (2) are
satisfied, `(x) is an invertible module with a lower trian-
gular Jacobian. From Theorem 1, the inverse of `(x) can
be computed by solving n monotonic univariate functions
sequentially.

We next modify `(x) to follow the form of a residual block:

r(x) , t� x+ `(x), (3)

where t > 0 and � is element-wise multiplication. Follow-
ing the same reasoning, r(x) has a lower triangular Jacobian,
and is invertible under the same constraints of Eq. (2). In
practice, this residual block performs better when a large
number of invertible layers are chained together.

3.4. Masked convolutions

Convolution is a special type of linear transformation. We
note that with appropriate masks, convolutions correspond
to triangular matrices (cf ., causal convolutions used in Oord
et al. (2016)). In our experiments, we use masked con-
volutions to implement the invertible layer discussed in
Section 3.3 for image classification and density estimation.

Suppose the input to our invertible layer is x ∈ RC×H×W ,
where C denotes the number of channels, and H , W denote
height and width respectively. Let M ∈ RC1×C2×R×R

denote a masked convolutional filter that has C1 input
channels, C2 output channels, and a filter size of R × R.
We need 3 masked convolutions M1 ∈ RC×kC×R×R,
M2 ∈ RkC×kC×R×R and M3 ∈ RkC×C×R×R for the
3 groups of basic invertible modules respectively. The resid-
ual version of the invertible layer can be written as

r(x) = t� x+

M3 ~ h(M2 ~ h(M1 ~ x+ b1) + b2) + b3, (4)

where ~ denotes discrete convolution. The filters of M1,
M2, M3 are all constrained such that Eq. (2) holds true.
However, this constraint only affects 2

R2 of all entries in the
filters, since Eq. (2) only involves diagonals.

4. Building Invertible Neural Networks
In this section, we discuss how to combine multiple invert-
ible layers together to form a deep invertible neural network,
which we call MinvNet. We focus on the invertible layer with
residual connections and masked convolutions (Eq. (4)).

Grouped invertible layers Previously, we often assume
the basic invertible module uses a lower triangular matrix to
simplify the discussion, and the invertible layer has a lower
triangular Jacobian. To maximize the expressive power of
our invertible neural network, it is undesirable to constrain
the Jacobian of the network to be triangular. We thus al-
ways group two invertible layers together as a chain—one
has a lower triangular Jacobian and the other has an upper
triangular Jacobian. The grouped layers are still invertible
since each layer in the group is invertible. The Jacobian of
the grouped layers are no longer triangular, but its determi-
nant is still easy to compute since it is the product of the
determinants of two triangular matrices.

Invertible subsampling Subsampling is important for en-
larging the receptive field of convolutions. However, com-
mon subsampling operations such as pooling and strided
convolutions are usually not invertible. Following Dinh
et al. (2016) and Behrmann et al. (2019), we use a “squeez-
ing” operation to reshape the feature maps so that they have
smaller resolution but more channels. After a squeezing
operation, the height and width will decrease by a factor of
2, but the number of channels will increase by a factor of 4.
This procedure is invertible and the Jacobian is identity.

5. Experiments
In this section, we test our MinvNet on both image classi-
fication and density estimation. We focus on two common



MinvNet: Building Invertible Neural Networks with Masked Convolutions

image datsets, MNIST and CIFAR-10.

5.1. Classification

To check the expressive power of MinvNet, we test its clas-
sification performance on CIFAR-10, and compare it to a
ResNet with a similar architecture.

Architecture The ResNet contains 38 pre-activation resid-
ual blocks (He et al., 2016), and each block has three 3× 3
convolutions. The architecture is divided into 3 stages, with
16, 64 and 256 filters respectively. Our MinvNet uses 19
grouped invertible layers, which include a total of 38 resid-
ual invertible layers, each having three 3× 3 convolutions.
Batch normalization is applied before each invertible layer.
Note that batch normalization does not affect the invertibil-
ity of our network, because during test time it uses fixed
running average and standard deviation and is an invertible
operation. We use 2 squeezing blocks at the same position
where ResNet applies subsampling, and matches the number
of filters used in ResNet. To produce the logits for classifi-
cation, both MinvNet and ResNet first apply global average
pooling and then use a fully connected layer.

Setup Following Behrmann et al. (2019), we pad the im-
ages to 16 channels with zeros. This corresponds to the
first convolution in ResNet which increases the number of
channels to 16. Both ResNet and our MinvNet are trained
with AMSGrad (Reddi et al., 2018) for 300 epochs with the
cosine learning rate schedule (Loshchilov & Hutter, 2016)
and an initial learning rate of 0.001. Both networks use a
batch size of 128.

Results On the test dataset, MinvNet achieves a test ac-
curacy of 90.2% while ResNet achieves 92.6%. Both Min-
vNet and ResNet achieves 100% accuracy on the training
dataset. This indicates that MinvNet has enough representa-
tion power to fit all data labels on the training dataset, and
the invertible representations learned by it are comparable
to representations learned by non-invertible networks.

5.2. Density Estimation

Setup We mostly follow the settings in Papamakarios et al.
(2017). All training images are dequantized and transformed
using the logit transformation. Networks are trained using
AMSGrad (Phuong & Phong, 2019). On MNIST, we decay
the learning rate by a factor of 10 at the 250th and 350th
epoch, and train for 400 epochs. On CIFAR-10, we train
with cosine learning rate decay for a total of 200 epochs. All
initial learning rates are 0.001. We report bits per dimension
(bpd), which is proportional to negative log-likelihood.

Network Architecture For density estimation on MNIST,
we use 20 grouped invertible layers with 45 filters each. For

Method MINIST CIFAR10

MAF (Papamakarios et al., 2017) 1.89 4.31
Real NVP (Dinh et al., 2016) 1.06 3.49
Glow (Kingma & Dhariwal, 2018) 1.05 3.35
FFJORD (Grathwohl et al., 2018) 0.99 3.40
i-ResNet (Behrmann et al., 2019) 1.06 3.45

MinvNet (ours) 0.98 3.35

Table 1. MNIST and CIFAR10 bits per dimension results.

Figure 1. Samples from MinvNet. Left: MNIST samples, Right:
CIFAR-10 samples.

CIFAR-10, 16 grouped invertible layers are used, each of
which has 255 filters. Two squeezing operations are used.

Results We compare our results with previous arts in
Tab. 1. MinvNet sets the new state-of-the-art bpd on MNIST
and matches the previous state-of-the-art on CIFAR-10. Our
MinvNet on MNIST has comparable number of parameters
to i-ResNet, and our MinvNet on CIFAR-10 only uses 1/4
parameters of i-ResNet. Note that all values in Tab. 1 are
with respect to the continuous distribution of uniformly de-
quantized images, and results of models that view images
as discrete distributions are not directly comparable (e.g.,
PixelCNN (Oord et al., 2016), IAF-VAE (Kingma et al.,
2016), and Flow++ (Ho et al., 2019)).

Sampling Samples can be obtained by sequentially in-
verting each layer of MinvNet. We use 5 iterations of the
Newton-Raphson method to invert monotonic univariate
functions. Uncurated samples are provided in Fig. 1.

6. Conclusion
We introduce MinvNet, an invertible network based on
masked convolutions. We demonstrate its great potential
in classification and density estimation. MinvNet’s perfor-
mance on classification is comparable to ResNet, indicating
the strong expressive power of the architecture. For density
estimation, it matches or surpasses the best reported results
on MNIST and CIFAR-10.
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A. Proof of Theorem 1
Theorem 1. If the following conditions hold for all x ∈ Rn

• Jf (x) is lower triangular;

• diag(Jf (x)Jf (0)) > 0,

then f is invertible. Moreover, x = f−1(y) can be obtained
by sequentially inverting n univariate monotonic functions.

Proof. Let’s first prove the following two lemmas.

Lemma 1. Condition 1 implies f(x)i is a function of only
x1, ...,xi.

Proof. Due to the fact that Jf (x) is lower triangular, we
have Jf (x)i,j = ∂f(x)i

∂xj
= 0 for any j > i. This implies

f(x)i is not a function of xj for any j > i and thus depends
only on x1, ...,xi.

Lemma 2. For any i, condition 2 implies either of the
following:

i. ∂f(x)i
∂xi

> 0 for all xi ∈ R.

ii. ∂f(x)i
∂xi

< 0 for all xi ∈ R.

That is, f(x)i is monotonic on xi.

Proof. Clearly condition2 is equivalent to
∂f(xi)
∂xi

∂f(xi)
∂xi
|xi=0 > 0 for any xi. This means for

any xi,
∂f(xi)
∂xi

6= 0 and shares the same sign as ∂f(xi)
∂xi
|xi=0,

which is a constant. This further implies ∂f(xi)
∂xi

is either
positive or negative for all xi ∈ R, and f(x)i is thus
monotonic on xi.

We now incorporate the above lemmas to prove the theorem.
To solve x1, we only need to solve f(x)1 = y1, which is a
map defined only on variable x1. Since condition 2 implies
f(x)1 is monotonic on x1, we know f(x)1 is injective,
which implies that f(x)1 has a unique inverse x1. Now
assume we have already solved x1, ...,xk. To solve xk+1,
let’s plug in x1, ...,xk to f(x)k+1, which can then be treated
as a real valued function defined only on xk+1. As condition
2 implies f(x)k+1 is a monotonic function of xk+1, this
tells us xk+1 is uniquely determined due to the injective
property of monotonic function. We then repeat the process
until xn. In this case, we show that f−1(y) = [x1, ...,xn]

T

exists, and can be solved uniquely.


