
Inverting Deep Generative models,
One layer at a time

Qi Lei 1 Ajil Jalal 1 Inderjit S. Dhillon 1 2 Alexandros G. Dimakis 1

Abstract
We study the problem of inverting a deep genera-
tive model with ReLU activations. In most prior
works this is performed by attempting to solve a
non-convex optimization problem involving the
generator with gradient method. In this paper we
develop novel linear programming solvers with
error bound analysis for different metrics. Our
empirical validation demonstrates that we obtain
better reconstructions when the latent dimension
is large.

1. Introduction
Modern deep generative models are demonstrating excellent
performance as signal priors, frequently outperforming the
previous state of the art for various inverse problems in-
cluding denoising, inpainting, reconstruction from Gaussian
projections and phase retrieval (see e.g. (Bora et al., 2017;
Fletcher & Rangan, 2017; Gupta et al., 2018; Dhar et al.,
2018; Hand et al., 2018; Tripathi et al., 2018) and references
therein).

A central problem that appears when trying to solve in-
verse problems using deep generative models is inverting
a generator (Bora et al., 2017; Hand & Voroninski, 2017;
Shah & Hegde, 2018). We are interested in deep genera-
tive models, parameterized as feed-forward neural networks
with (Leaky)ReLU activations. Given a generator G(z) that
maps low-dimensional vectors in Rk to high dimensional
vectors (e.g. images) in Rn, we want to reconstruct the
latent code z∗ if we can observe x = G(z∗) (realizable
case) or a noisy version x = G(z∗) + e where e denotes
some measurement noise.

We are therefore interested in the optimization problem
arg min

z
‖x−G(z)‖p, (1)

*Equal contribution 1UT Austin 2Amazon. Correspondence to:
Qi Lei <leiqi@ices.utexas.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

for some p norm. This problem is a starting point for general
sensing problems, and is a special case especially applied
for image compressions, and image denoising tasks (Heckel
& Hand, 2018). Previous work focuses on the `2 norm
which works slowly with gradient descent (Bora et al., 2017;
Huang et al., 2018). In this work, we focus on direct solvers
and error bound analysis for `∞ and `1 norm instead. Note
that this is a non-convex optimization problem even for a
single-layer network with (Leaky)ReLU activations. There-
fore gradient descent may easily get stuck at local minimum
and may take a long time to converge. Take the MNIST
dataset as an example, compression a single image by op-
timizing (1) takes on average several minutes and suffers
from low success rate, which is not useful in practice.

Our Contributions: For the realizable case we show that
for a single layer solving (1) is equivalent to solving a linear
program. For two layers, however, the problem to recover
a binary latent code is NP-hard even for realizable inputs.
Meanwhile, the pre-image in the latent space can be non-
convex set.

For realizable inputs and arbitrary depth we show that in-
version is possible in polynomial time under some mild
conditions. A similar result was established very recently
for gradient descent (Huang et al., 2018). Unlike gradient
descent that is conducted iteratively, we instead propose
inversion by layer-wise Gaussian elimination. Our result
holds even if each layer is expanding by a constant factor
while (Huang et al., 2018) requires a logarithmic multiplica-
tive expansion in each layer.

For noisy inputs and arbitrary depth we propose two direct
solvers for different error types. We establish provable error
bounds on the reconstruction error when the weights are
random and have constant expansion. We also show empiri-
cally that our method matches and sometimes outperforms
gradient descent for inversion, especially when the latent
dimension becomes larger.

2. Setup
We consider deep generative models G : Rk → Rn with
the latent dimension k smaller than the signal dimension n,

Inverting Deep Generative models, One layer at a time

parameterized by a d-layer feed-forward network:
G(z) = φd(φd−1(· · ·φ2(φ1(z)) · · ·)), (2)

where each layer φi(a) is defined as a composition of ac-
tivations and linear maps: ReLU(Wia + bi). We focus
on the ReLU activations ReLU(a) = max{a,0} applied
coordinate-wise, and we will also consider the activation
as LeakyReLU(a) = ReLU(a) + cReLU(−a), where the
scaling factor c ∈ (0, 1). 1 Wi ∈ Rni×ni−1 are the weights
of the network, and bi ∈ Rni are the bias terms. Therefore,
n0 = k and nd = n indicate the dimensionality of the input
and output of the generator G. We use zi to denote the out-
put of the i-th layer. Note that one can absorb the bias term
bi, i = 1, 2, · · · d into Wi by adding one more dimension
with a constant input. Therefore, without loss of generality,
we sometimes omit bi when writing the equation, unless we
explicitly needed it.

We use bold lower-case symbols for vectors, e.g. x, and xi
for its coordinates. We use upper-case symbols for matrices,
e.g. W , where wi is its i-th row vector. For a indexed set I ,
WI,: represents the submatrix of W consisting of each i-th
row of W for any i ∈ I .

3. Invertibility for ReLU Realizable Networks
In this section we study the realizable case, i.e., given an
observation vector x, ∃z∗ s.t. x = G(z∗). In particular,
we show that the problem is NP-hard for ReLU activations
in general, but could be solved in polynomial time with
some mild assumptions with high probability. We present
our theoretical findings first and all proofs of the paper are
presented in Appendix B.

Inverting a Single Layer: We start with the simplest one-
layer case to find if minz ‖x−G(z)‖p = 0, for any p-norm.
Since the problem is non-convex, further assumptions of
W are required (Huang et al., 2018) for gradient descent
to work. When the problem is realizable, however, to find
feasible z such that x = φ(z) ≡ ReLU(Wz + b), one
could invert the function by solving a linear system:

w>i z + bi = xi, ∀i s.t. xi > 0
Its solution set is convex and forms a polytope, but possibly
includes uncountable feasible points. Therefore, it becomes
unclear how to continue the process of layer-wise inversion
unless further assumptions are made.

Challenges to Invert a Two-Layer ReLU Network:
We now show that the problem of recovering a binary latent
code for a two layer network is NP-hard, using a reduction
from the MAX-3SAT problem.

Theorem 1. Given an observation vector x, consider
the problem of finding z ∈ {±1}, such that G(z) :=

1The inversion of LeakyReLU networks is mostly dominated
by ReLU networks and we therefore only mention it when needed.

ReLU(W2(ReLU(W1z + b1) + b2) = x. The problem
is NP-hard since it can be reduced from MAX-3SAT.

Meanwhile, although the preimage for a single layer is a
polytope thus convex, it doesn’t continue to hold for more
than one layers, see Example 1. Fortunately, we present
next that some moderate conditions guarantee a polynomial
time solution with high probability.

Inverting Expansive Random Network in Polynomial
Time:

Assumption 1. For a weight matrixW ∈ Rn×k, we assume
1. its entries are sampled i.i.d Gaussian, and
2. W is tall: n = c0k for some constant c0 ≥ 2.1.

In the previous section, we indicate that the per layer inver-
sion can be achieved through Gaussian eliminization. With
Assumption 1 we will be able to prove that the solution is
unique with high probability, and thus Theorem 2 holds for
ReLU networks with arbitrary depth.

Theorem 2. Let G ∈ Rk → Rn be a generative model
defined in (2). If the weight matrices Wi, i ∈ [d] satisfies
Assumption 1, then for any z∗ ∈ Rk and observation x =
G(z∗), with probability 1−e−Ω(k), z∗ can be inferred from
x by solving layer-wise linear equations. Namely, a random,
expansive and realizable generative model can be inverted
in polynomial time with high probability.

Therefore the time complexity of exact recovery is no worse
than

∑d−1
i=0 n

2.376
i (Golub & Van Loan, 2012) since the

recovery simply requires solving d linear equations with
dimension ni−1, i ∈ [d]. On the other hand, inversion of
LeakyReLU layers are significantly easier for the realizable
case, as presented in remark 1.

4. Invertibility for Noisy ReLU Networks
Besides the realizable case, the study of noise tolerance is
essential for many real applications. In this section, we thus
consider the noisy setting with observation x = G(z∗) + e,
with both `∞ and `1 error bound, in favor of different types
of random noise distribution. In this section, all generators
are without the bias term.

4.1. `∞ Norm Error Bound

Again we start with a single layer, i.e. we observe x =
φ(z∗) + e = ReLU(Wz∗) + e. We first look at the case
where the entries of e are uniformly bounded and the ap-
proximation of arg minz ‖φ(z)− x‖∞.

We notice that for an ε ≥ ‖e‖∞, the true prior z∗ that
produces the observation x = φ(z∗) + e falls into the

Inverting Deep Generative models, One layer at a time

following constraints:
xj − ε ≤ w>j z ≤ xj + ε if xj > ε, j ∈ [n]

w>j z ≤ xj + ε if xj ≤ ε, j ∈ [n]

zi ≥ 0 ∀i ∈ [k], (3)
where the last term should be omitted to recover the first
layer. Therefore a natural way to approximate the prior is to
use linear programming to solve the above constraints.

A layer-wise inversion is formally presented in Algorithm 1
where we start from a small estimation of ε and gradually
increase the tolerance until feasibility is achieved 2.

A key assumption that possibly conveys the error bound
from the output to the solution is the following assumption:

Assumption 2 (Submatrix Extends `∞ Norm). For the
weight matrix W ∈ Rn×k, there exists an integer m >
k and a constant c∞, such that for any I ⊂ [n] :=
{1, 2, · · ·n}, |I| ≥ m, WI,: satisfies

WI,: · ‖x‖∞ ≥ c∞‖x‖∞,
with probability 1− e−Ω(k) for any x, and c∞ is a constant.
Recall that WI,: is the sub-rows of W confined to I .

This condition enables the layer-wise inversion to produce
sufficiently small error given enough positive observations,
thus gives us a tight inversion in Theorem 4 in the appendix.
We argue that the assumptions required could be satisfied
by random weight matrices sampled from i.i.d Gaussian
distribution, and present the following corollary.

Corollary 1. Let x = G(z∗) + e be a noisy observation
produced by the generator G defined in (2). Let each weight
matrix Wi ∈ Rni−1×ni (ni ≥ 5ni−1,∀i) be sampled from
i.i.d Gaussian distribution ∼ N (0, 1), then Wi satisfies
Assumption 2 with some constant c2 ∈ (0, 2]. Let the error e

satisfies `∞ = ε, where ε < cd2
2d+4 ‖z∗‖2

√
k. By recursively

applying Algorithm 1, it produces an z that satisfies ‖z −
z∗‖∞ ≤ 2dε

cd2
with probability 1− eΩ(k).

Refer to Remark 2 for layer-wise inversion of LeakyReLU.

4.2. `1 Norm Error Bound

In this section we develop a generative model inversion
framework using the `1 norm. We introduce Algorithm 2
that tolerates error in different level for each output coordi-
nate and intends to minimize the `1 norm error bound.

Different from Algorithm 1, the deviating error allowed on
each observation is no longer uniform and the new algo-
rithm is actually optimizing over the `1 error. Similar to the
error bound analysis with `∞ norm we are able to get some
tight approximation guarantee under some mild assumption

2For practical use, we introduce a factor α to gradually increase
the error estimation. In our theorem, it assumed we expicitly set ε
to invert the i-th layer as 2d−i‖e‖0/cd−i

2 .

related to Restricted Isometry Property for `1 norm:
Assumption 3 (Submatrix Extends `1 Norm). For a weight
matrix W ∈ Rn×k, there exists an integer m > k and
a constant c1, such that for any I ⊂ [n], |I| ≥ m, WI,:

satisfies
‖WI,: · x‖1 ≥ c1‖x‖1, (4)

with probability 1− e−Ω(k) for any x.

This assumption is a special case of the lower bound of the
well-studied Restricted Isometry Property, for `1-norm and
sparsity k, i.e., (k,∞)-RIP-1. Similar to the `∞ analysis,
we are able to get recovery guarantees for generators with
arbitary depth.
Theorem 3. Let x = G(z∗)+e be a noisy observation pro-
duced by the generatorG, a d-layer ReLU network mapping
from Rk → Rn. Let each weight matrix Wi ∈ Rni−1×ni

satisfy Assumption 3 with the integer mi > ni−1 and con-
stant c1. Let the error e satisfy ‖e‖1 ≤ ε, and for each
zi = φi(φi−1(· · ·φ(z∗) · · ·)), at least mi coordinates are
larger than 2d+1−iε

cd−i1

. Then by recursively applying Algo-

rithm 2, it produces a z that satisfies ‖z− z∗‖1 ≤ 2dε
cd1

with

probability 1− e−Ω(k).

There is a significant volume of prior work on the RIP-1
condition. For instance, studies in (Berinde et al., 2008)
showed that a (scaled) random sparse binary matrix with
m = O(s log(k/s)/ε2) rows is (s, 1 + ε)-RIP-1 with high
probability. In our case s = k and ε could be arbitrarily
large, therefore again we only require the expansion factor to
be constant. Similar results with different weight matrices
are also shown in (Nachin, 2010; Indyk & Razenshteyn,
2013; Allen-Zhu et al., 2016).

5. Experiments
In this section, we compared our methods `1 LP and `∞ LP
with gradient descent (GD) (Hand & Voroninski, 2017).

5.1. Synthetic Data

We validate our algorithms on synthetic network at various
noise levels. We first fix the network architecture and inves-
tigate the influence of different noise level, and then fix all
but the input dimension to verify our expanding analysis.

Recovery with Various Input Neurons: In Figure 1 we re-
port the empirical success rate of recovery for our proposals
and GD. With exact setting as in (Huang et al., 2018), a run
is considered successful when ‖z∗ − z‖2/‖z∗‖2 ≤ 10−3.
We observe that when input width k is small, both GD and
our methods grant 100% success rate. However, as the input
neurons grows, GD drops to complete failure when k ≥60,
while our algorithms continue to present 100% success rate
until k = 109.

Inverting Deep Generative models, One layer at a time

Figure 1. Comparison of our method and GD on the empirical
success rate of recovery (200 runs on random networks) versus
the number of input neurons k for the noiseless problem. The
architecture chosen here is a 2 layer fully connected ReLU network,
with 250 hidden nodes, and 600 output neurons. Our algorithms
are significantly outpeforming GD for higher latent dimensions k.

Recovery with Various Observation Noise: In Figure
2(a)(b) we plot the relative recovery error ‖z−z∗‖2/‖z∗‖2
at different noise levels. It supports our theoretical findings
that with other parameters fixed, the recovery error grows
almost linearly to the observation noise. Meanwhile, we
observe in both cases, our methods perform similarly to
GD on average, while GD is less robust and produces more
outlier points. As expected, our `∞ LP performs slightly
better than GD when the input error is uniformly bounded;
see Figure 2(a). However, with a large variance in the obser-
vation error, as seen in Figure 2(b), `∞ LP is not as robust
as `1 LP or GD.

5.2. Experiments on Generative Model for MNIST

To verify the practical contribution of our model, we experi-
ment on a real generative network with the MNIST dataset.

Similar to the simulation part, we compared our methods
with GD (Hand & Voroninski, 2017). Under this setting, we
choose the learning rate to be 10−3 and number of iterations
up to 10,000 (or until gradient norm is below 10−9).

We first randomly select some empirical examples to visu-
ally show performance comparison in Figure 3. In these
examples, observations are perturbed with some Gaussian
random noise with variance 0.3 and we use `∞ LP as our
algorithm to invert the network. From the figures, we could
see that our method could almost perfectly denoise and
reconstruct the input image, while GD impairs the complete-
ness of the original images to some extent.

We also compare the distribution of relative recovery error
with respect to different input noise levels, as ploted in
Figure 2(c)(d). From the figures, we observe that for this
real network, our proposals still successfully recover the
ground truth with good accuracy most of the time, while
GD usually gets stuck in local minimum. This explains why

(a) Uniform Noise; Random Net (b) Gaussian Noise; Random Net

(c) Uniform Noise; Real Net (d) Gaussian Noise; Real Net

Figure 2. Comparison of our proposals (`∞ LP and `1 LP) versus
GD. On x-axis we plot the relative noise level and relative recovery
error on y-axis. In experiments (a)(b) the network is randomly
generated and fully connected, with 20 input neurons, 100 hidden
neurons and 500 output neurons. Each dot represents a recovery
experiment (among 200 for each noise level). Each line connects
the median of the 200 runs for each noise level. As can be seen,
our algorithm (Blue/Orange) has similar performance to gradient
descent, except at low noise levels where it is slightly more robust.
In experiments (c)(d) the network is generative model for the
MNIST dataset. In this case, GD fails to find global minimum in
almost all the cases.

it produces defective image reconstructions as shown in 3.

Observation

Ground Truth

Ours (`∞ LP)

GD (Huang et al., 2018)

0 3 7 8 9

Figure 3. Recovery comparison using our algorithm `∞ LP versus
GD for an MNIST generative model. Notice that `∞ LP produces
reconstructions that are clearly closer to the ground truth.

Inverting Deep Generative models, One layer at a time

References
Allen-Zhu, Z., Gelashvili, R., and Razenshteyn, I. Re-

stricted isometry property for general p-norms. IEEE
Transactions on Information Theory, 62(10):5839–5854,
2016.

Berinde, R., Gilbert, A. C., Indyk, P., Karloff, H., and
Strauss, M. J. Combining geometry and combinatorics:
A unified approach to sparse signal recovery. In Com-
munication, Control, and Computing, 2008 46th Annual
Allerton Conference on, pp. 798–805. IEEE, 2008.

Bora, A., Jalal, A., Price, E., and Dimakis, A. G. Com-
pressed sensing using generative models. arXiv preprint
arXiv:1703.03208, 2017.

Dhar, M., Grover, A., and Ermon, S. Modeling sparse devi-
ations for compressed sensing using generative models.
arXiv preprint arXiv:1807.01442, 2018.

Donoho, D. L., Maleki, A., and Montanari, A. Message-
passing algorithms for compressed sensing. Proceedings
of the National Academy of Sciences, 106(45):18914–
18919, 2009.

Fletcher, A. K. and Rangan, S. Inference in deep networks
in high dimensions. arXiv preprint arXiv:1706.06549,
2017.

Golub, G. H. and Van Loan, C. F. Matrix computations,
volume 3. JHU Press, 2012.

Gupta, S., Kothari, K., de Hoop, M. V., and Dokmanić,
I. Deep mesh projectors for inverse problems. arXiv
preprint arXiv:1805.11718, 2018.

Hand, P. and Voroninski, V. Global guarantees for enforcing
deep generative priors by empirical risk. arXiv preprint
arXiv:1705.07576, 2017.

Hand, P., Leong, O., and Voroninski, V. Phase retrieval un-
der a generative prior. In Advances in Neural Information
Processing Systems, pp. 9154–9164, 2018.

Heckel, R. and Hand, P. Deep decoder: Concise image rep-
resentations from untrained non-convolutional networks.
arXiv preprint arXiv:1810.03982, 2018.

Huang, W., Hand, P., Heckel, R., and Voroninski, V.
A provably convergent scheme for compressive sens-
ing under random generative priors. arXiv preprint
arXiv:1812.04176, 2018.

Indyk, P. and Razenshteyn, I. On model-based rip-1 ma-
trices. In International Colloquium on Automata, Lan-
guages, and Programming, pp. 564–575. Springer, 2013.

Metzler, C. A., Maleki, A., and Baraniuk, R. G. From
denoising to compressed sensing. IEEE Transactions on
Information Theory, 62(9):5117–5144, 2016.

Nachin, M. Lower bounds on the column sparsity of sparse
recovery matrices. UAP: MIT Undergraduate Thesis,
2010.

Rudelson, M. and Vershynin, R. Smallest singular value of a
random rectangular matrix. Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant
Institute of Mathematical Sciences 62.12, pp. 1707–1739,
2009.

Schniter, P., Rangan, S., and Fletcher, A. K. Vector approxi-
mate message passing for the generalized linear model.
In Signals, Systems and Computers, 2016 50th Asilomar
Conference on, pp. 1525–1529. IEEE, 2016.

Shah, V. and Hegde, C. Solving linear inverse problems
using gan priors: An algorithm with provable guarantees.
arXiv preprint arXiv:1802.08406, 2018.

Tripathi, S., Lipton, Z. C., and Nguyen, T. Q. Correction by
projection: Denoising images with generative adversarial
networks. arXiv preprint arXiv:1803.04477, 2018.

Inverting Deep Generative models, One layer at a time

A. Methodology Details
In this section we present the detailed steps for our proposed
methods. Firstly we add some remarks for LeakyReLU:
Remark 1. Unlike ReLU, LeakyReLU is a bijective map,
i.e., each observation corresponds to a unique preimage:

LeakyReLU−1(x) =

{
x if x ≥ 0

1/cx otherwise. (5)

Therefore, if each Wi ∈ Rni×ni−1 is of rank at least ni−1,
each layer map φi has a unique preimage (in the realizable
case) and could be computed by the inverse of LeakyReLU
(5) and linear regression.

A.1. `∞ LP

We first include the detailed algorithm to invert a single
layer with `∞ error bound that we call `∞ LP. When we
don’t know how much noise we expect, we could start from
a small value of error tolerance ε and gradually increase the
tolerance until LP returns feasible solution.

Algorithm 1 Linear programming to invert a single layer
with `∞ error bound (`∞ LP)

Input: Observation x ∈ Rn, weight matrix W =
[w1|w2| · · · |wn]>, initial error bound guess ε > 0, scal-
ing factor α > 1.
repeat

Solve the following linear programming:
arg min

z,δ
δ

s.t. xj − δ ≤ w>j z ≤ xj + δ if xj > ε

w>j z ≤ xj + δ if xj ≤ ε
δ ≤ ε
zk ≥ 0 ∀k.

ε← εα
until z infeasible
Output: z

Remark 2. For LeakyReLU, we could do at least as good as
ReLU, since we could simply view all negative coordinates
as inactive coordinates of ReLU, and each observation will
produce a loose bound.

On the other hand, if there are significant number of nega-
tive entries, we could also change the linear programming
constraints of Algorithm 1 as follows:
arg min

z,δ
δ

s.t. xj − δ ≤ w>j z ≤ xj + δ if xj > ε

1/c(xj − δ) ≤ w>j z ≤ xj + δ if − ε < xj ≤ ε
xj − δ ≤ cw>j z ≤ xj + δ if xj ≤ −ε
δ ≤ ε.

A.2. `1 LP

We then present `1 LP to tolerate noise non-uniform in
different directions in Algorithm 2.

Algorithm 2 Linear programming to invert a single layer
with `1 error bound (`1 LP)

Input: Observation x ∈ Rn, weight matrix W =
[w1|w2| · · · |wn]>, initial error bound guess ε > 0, scal-
ing factor α > 1.
for t = 1, 2, · · · do

Solve the following linear programming:

z(t), e(t) ← arg min
z,e

∑
i

ei

s.t. xj − ej ≤ w>j z ≤ xj + ej if xj > ε

w>j z ≤ xj + ej if xj ≤ ε
ej ≥ 0 ∀j ∈ [n]

zk ≥ 0 ∀k.
ε← εα
if t ≥ 2 and ‖φ(z(t)) − x∗‖1 ≥ ‖φ(z(t−1)) − x∗‖1
then

return z(t−1)

end if
end for

We also introduce the `1 LP for LeakyReLU. The framework
is mostly similar to Algorithm 2, and the linear program-
ming constraints are modified with more information from
negative observations.

z(t), e(t) ← arg min
z,e

∑
i

ei

s.t. xj − ej ≤ w>j z ≤ xj + ej if xj > ε

1/c(xj − ej) ≤ w>j z ≤ xj + ej if ε ≤ xj ≤ ε
xj − ej ≤ cw>j z ≤ xj + ej if xj < −ε
ej ≥ 0 ∀j ∈ [n].

A.3. Relaxation on the ReLU Configuration Estimation

Our previous methods critically depend on the correct esti-
mation of the observation signs. In both Algorithm 1 and 2,
we require the ground truth of all intermediate layer outputs
to have many coordinates with large magnitude so that they
can be distinguished from noise. An incorrect estimate from
an "off" configuration to an "on" condition will possibly
cause primal infeasibility when solving the LP. Increasing
ε ameliorates this problem but also increases the recovery
error.

With this intuition, a natural workaround is to perform some
relaxation to tolerate incorrectly estimated signs of the ob-

Inverting Deep Generative models, One layer at a time

servations.
maxz

∑
i

max{0, xi}w>i z =: ReLU(x)>Wz,

s.t w>i z ≤ xi + ε. (6)
Here the ReLU configuration is no longer explicitly reflected
in the constraints. Instead, we only include the upper bound
for each inner product w>i z, which is always valid whether
the ReLU is on or off. The previous requirement for the
lower bound w>i z ≥ xi − ε is now relaxed and hidden in
the objective part. When the value of xi is relatively large,
the solver will produce a larger value of w>i z to achieve
optimality. Since this value is also upper bounded by xi + ε,
the optimal solution would be approaching to xi if possible.
On the other hand, when the value of xi is close to 0, the
objective dependence on w>i z is almost negligible.

Meanwhile, in the realizable case when ∃z∗ such that
ReLU(Wz∗) = x, and ε = 0, it is easy to show that the
solution set for (6) is exactly the preimage of ReLU(Wz).
This also trivially holds for Algorithm 1 and 2.

Relaxation for LeakyReLU: For LeakyReLU, similarly
we take the following relaxation:

maxz x>Wz (7)
s.t. 1/cmin{xi − ε, 0} ≤ w>i z ≤ max{xi + ε, 0}

Similarly when ε = 0 and ∃z0,LeakyReLU(Wz0) = x,
the solution to (7) is exactly z0.

B. Theoretical Analysis
NP-hardness to Invert a Binary Two-Layer Network:
We show that the inversion could be reduced to MAX-3SAT
problem: Given a 3-CNF formula φ (i.e. with at most 3
variables per clause), find an assignment that satisfies the
largest number of clauses.

Proof of Theorem 1. We present an example of recovering
a binary latent code from two-layer network that could be
reduced to any MAX 3SAT problem, which is provably NP
hard.
Write b2 = [0| − 1] ∈ Rn, W2 = [1|I]> ∈ Rn×m and
observation x = [t|0] ∈ Rn, n = m + 1. As usual, we
simplify the generator function as G(z) := φ2(φ1(x)). It’s
easy to see that all possible solutions for z1 = φ−1

2 (x)
forms a polytope:

n∑
i=1

(z1)i = t

0 ≤ (z1)i ≤ 1,∀i ∈ [m] (8)
From polytope (8) we could tell that the sparsity for feasible
solution of z1 is t. Furthermore the polytope consists of all
vectors of t 1’s and n− t 0’s.

LetW1 be a matrix such that each row consists of exact three
non-zeros among two choices±1. Let z be the variables for

the 3SAT problem, i.e. a one denotes a true value and a −1
a false value. Let all entries in b1 to be -2. Therefore every
entry in z1 = ReLU(W1z + b1) indicates the value of each
clause. Only when the dot product of W1’s corresponding
row with x is exactly 3, the clause if true and φ1 will output
1, otherwise when the value is less than or equal to 2, it
means the clause is false and φ1 outputs 0.

In other words, the i-th clause to be true is equivalent to
ReLU((W1)>i x + b1) = 1, while the clause being false
≡ ReLU((W1)>i x + b1) = 0.

When there is a polynomial algorithm to find a solution for
φ2(φ1(z)) = x, we find a solution that satisfies t clauses.
Loop t over 1 through m one would get the maximum
possible satisfiable clauses. (Notice with a 3-CNF formula
m = 5/3k and we will have a polynomial solution for
MAX-3SAT.) Therefore the original problem is also NP-
hard.

Proof of Non-convexity:
The following example demonstrate this property is no
longer true for a two-layer case:

Example 1. For W1 = [[1, 2], [3, 1]], W2 = [1,−1],
and observation x = 1, the solution set for G(z) ≡
ReLU(W2ReLU(W1z)) = x is non-convex.

Example 1 is very straightforward to show the non-convexity
of the preimage. Notice point x1 = (−1, 1) and x2 = (1, 3)
are in the solution set, but their convex combination x3 =
x1+x2

2 = (0, 2) is not a solution point with G(x3) = 2.

Proof of Exact Recovery for the Realizable Case:
The proof of Theorem 4 highly depends on the exact inver-
sion for a single layer:

Lemma 1. Under Assumption 1, a mapping φ(x) =
ReLU(Wx),W ∈ Rn×k is injective with high probabil-
ity 1 − exp(−Ω(k)). Namely, when φ(x) = φ(y), x = y.

Proof. Notice for each i-th index, (Wx)i is positive w.p.
1/2. Therefore, the number of positive coordinates in Wx,
denoted by variable X , follows Binomial distribution ∼
Bin(n, p), where n = c0k and p = 1

2 . With Hoeffding’s

inequality, F (k;n, p) := P(X ≤ k) < exp(−2 (np−k)2

n) =
exp(−Ω(k)). Meanwhile, for a matrix with entries follow
Gaussian distribution, with probability 1 it is invertible.
Therefore φ−1 could only have unique solution if there is
one.

Within the proof of Lemma 1, we show that with high prob-
ability the observation x ∈ Rn has at least k non-zero en-
tries, meaning the original linear programming has at least

Inverting Deep Generative models, One layer at a time

k equalities. Therefore the corresponding k rows forms an
invertible matrix with high probability. Therefore simply by
solving the linear equations we will attain the ground truth.

Proof of Theorem 2. From Lemma 1, for each layer φi :
Rni−1 → Rni , with probability 1 − exp(−Ω(ni)), and
for each observed zi = φi(z

∗
i−1), by solving a linear sys-

tem we are able to find z∗i−1. By union bound, failure in
the whole layerwise inverting process is upper bounded by∑d
i=1 exp(−Ω(ni)) = exp(−Ω(k)), since ni > 2ni−1 for

each i.

B.1. `∞ error bound

With Assumption 2, we are able to show the following
theorem that bounds the recovery error.

Theorem 4. Let x = G(z∗)+e be a noisy observation pro-
duced by the generatorG, a d-layer ReLU network mapping
from Rk → Rn. Let each weight matrix Wi ∈ Rni−1×ni

satisfies Assumption 2 with the integer mi > ni−1 and
constant c∞. Let the error e satisfies ‖e‖∞ ≤ ε, and
for each zi = φi(φi−1(· · ·φ(z∗) · · ·)), at least mi coordi-
nates are larger than ε 2d+1−i

cd−i∞
. Then by recursively apply-

ing Algorithm 1 backwards, it produces an z that satisfies
‖z − z∗‖∞ ≤ 2dε

cd∞
with high probability 1− exp(−Ω(k)).

Proof of Approximate Recovery with `∞ and `1 Error
Bound:
Theorem 4 depends on the layer-wise recovery of the inter-
mediate ground truth vectors. We first present the following
lemma for recovering a single layer with Algorithm 1 and
then extend the findings to arbitrary depth d.

Lemma 2 (Approximate Inversion of a Noisy Layer with
`∞ Error Bound). Given a noisy observation x = φ(z∗) :=
ReLU(Wz∗)+e. Let ε = ‖e‖∞. IfW satisfies Assumption
2 with the integer m > k, and the observation z∗ has at
least m coordinates that is larger than 2ε, then Algorithm
1 outputs an z that satisfies ‖z − z∗‖∞ ≤ 2ε

c∞
with high

probability 1− exp(−Ω(k)).

Proof. Denote I = {i|xi > ε}, and x∗ = ReLU(Wz∗) to
be the true output. Notice it also satisfies x∗i > 0,∀i ∈ I
from the error bound assumption. Since x∗ has more than
m entries ≥ 2ε, the observation x satisfies |I| ≥ m. Notice
for a feasible vector z with constraints in (3), it satisfies that

‖WI,:z − (x∗)I‖∞
≤ ‖WI,:z − xI‖∞ + ‖xI − x∗I‖∞ ≤ 2ε, (9)

since the error is bounded uniformly for each coordinate
in x∗. Meanwhile, notice the real z∗ satisfies φi(z∗) =
x∗i ,∀i ∈ I , we have WI,:z

∗ = x∗I . With Assumption 2,
WI,: satisfies ‖WI,:a‖∞ ≥ c∞‖a‖∞ for an arbitrary a
whp. Therefore together with (9) and let a = z − z∗ and

get:
c∞‖z − z∗‖∞ ≤ ‖WI(z − z∗)‖∞ ≤ 2ε. (10)

Therefore ‖z−z∗‖∞ ≤ 2ε
c∞

with probability 1−exp(Ω(k)).

Theorem 4 is the direct extension to the multi-layer case and
we simply apply Lemma 2 from d-th layer backwards to the
input vector with initial `∞ error of ε(2

c∞
)d−i for the i-th

layer.

Now we look at some examples that fulfill the assumptions.
The proof of `∞ extension is not easy and we look at the
following looser result instead.

Lemma 3 (Related result from (Rudelson & Vershynin,
2009)). For a sub-Gaussian random matrix A with height
N and width n, where N > 2n. Its smallest singular value

sn(A) := inf
‖x‖2=1

‖Ax‖2.

satisfies sn(A) ≥ c2
√
N with high probability 1 −

exp(Ω(n)), where c2 is some absolute constant.

The original paper requires N > (1 + Ω(log−1(n))n and
we presented above with a relaxed condition that N > 2n.

Proof of Corollary 1. With the aid of Lemma 3, Assump-
tion 2 is satisfied with m = 2ni−1 for each layer with
high probability. This is because for a random Gaus-
sian matrix A ∈ Rn×k, c2

√
n‖z‖∞ ≤ c2

√
n‖z‖2 ≤

‖Az‖2 ≤
√
n‖Az‖∞ w.h.p. Without loss of gen-

erality we assume c2 ≤ 2. We hereby only need
to prove that for each i-th layer, i ∈ [d], the out-
put z∗i = φi(φi−1(· · · (φ1(z∗)) · · ·)) ∈ Rni satisfies:∑ni
j=1 1(z∗i)j>

2d+1−iε
c
d−i
2

> 2ni−1 with high probability. We

start with the input layer. Notice each entry of y := W1z
∗

follows N (0, σ1 = ‖z∗‖2
√
k), P(yj > 2 2dε

cd2
) ≥ P(yj >

σ1

8) > 0.45. Meanwhile, the number of coordinates in
y that are larger or equal to σ1

8 follows binomial distribu-
tion Bin(n1, p), p > 0.45. Therefore the number of valid
coordinates ≥ 0.45n1 ≥ 2k (since ni+1 ≥ 5ni,∀i) with
probability 1 − exp(−Ω(k)). Afterwards since c2 < 1/2

and 2d−i+1ε

cd−i2

, i > 1 is always smaller than ε
cd2

and ‖z∗i ‖2 ≥
‖z∗‖2 with high probability since the network is expansive,
the condition for the remaining layers is easier and also
satisfied with probability at least 1− exp(−Ω(ni−1)). By
using union bound over all layers, the proof is complete.

The proof for the `1 error bound analysis is similar to that of
`∞ norm and we only show the essential difference. The key
point in transmitting the error from next layer to previous

Inverting Deep Generative models, One layer at a time

layer is as follows:
‖WI,:zi−1 − (z∗i)I‖1
≤‖WI,:zi−1 − (zi)I‖1 + ‖(zi)I − (z∗i)I‖1
≤2‖(zi)I − (z∗i)I‖1

(Optimality of Algorithm 2 and z∗i−1 being a feasible point)
Together with Assumption 3, we have:

‖WI,:zi−1 − (z∗i)I‖1 ≥ c1‖zi−1 − z∗i−1‖1

⇒‖zi−1 − z∗i−1‖1 ≤
2

c1
‖zi − z∗i ‖1.

Here z∗i is the ground truth of i-th intermediate vector. zi
is the one we observe and zi−1 is the solution Algorithm 2
produces.

C. More Experimental Results
We first present some details on how we setup the experi-
mental settings for random nets:
For our methods, we choose the scaling factor α = 1.2.
With gradient descent, we use learning rate of 1 and up to
1,000 iterations or until the gradient norm is no more than
10−9.

Model architecture: The architecture we choose in the
simulation aligns with our theoretical findings. We choose
a two layer network with constant expansion factor 5: latent
dimension k = 20, hidden neurons of size 100 and observa-
tion dimension n = 500. The entries in the weight matrix
are independently drawn from N (0, 1/ni).

Noise generation: We use two kinds of random distri-
bution to generate the noise, i.e., uniform distribution
U(−a, a) and Gaussian random noise N (0, a), in favor of
the `0 and `1 error bound analysis respectively. We choose
a ∈ {10−i|i = 1, 2, · · · 6} for both noise types.

C.1. More Results on LP Relaxation

We formally present the relaxed version based on (6):

In Figure 4, we compare the performance with respect to
different noise levels over all our proposals, including the re-
sults of Algorithm 3 that we omit in the main text. Although
we do not see significant improvement of the LP relaxation
method over our other proposals, we believe the relaxation
over the strict ReLU configurations estimation is of good
potential and should be more investigated in the future.

Time comparison on synthetic network:
Firstly, we should declare that for the very well-conditioned
random weighted networks, gradient descent converges with
large stepsize and we don’t observe much supriority over
GD in terms of the running time. In the table below we pre-
sented the running time for random net with different input
dimensions ranging from 10 to 110. However, for MNIST
dataset, the average running time for gradient descent to

Algorithm 3 Relaxed Linear programming to invert a single
layer (LP relaxation)

Input: Observation x ∈ Rn, weight matrix W =
[w1|w2| · · · |wn]>, initial error bound guess ε > 0, scal-
ing factor α > 1.
for t = 1, 2, · · · do

Solve the following linear programming:

z(t) ← arg max
z

∑
i

max{0, xi}w>i z

s.t w>i z ≤ xi + ε
ε← εα
if t > 2 and ∃z(t−1) feasible and ‖φ(z(t))− x∗‖1 ≥
‖φ(z(t−1))− x∗‖1 then

return z(t−1)

end if
end for

(a) Uniform Noise; Random Net (b) Gaussian Noise; Random Net

(c) Uniform Noise; Real Net (d) Gaussian Noise; Real Net

Figure 4. Comparison of our proposed methods (`∞ LP, `1 LP
and LP relaxation). As can be shown, all three methods show no
significant performance distinction. `∞ LP performs well in most
cases except with large Gaussian noise.

k 10 30 50 70 90 110
`∞ LP 0.63 0.73 0.83 0.90 0.95 1.03
`1 LP 1.05 1.05 1.23 1.28 1.39 1.22

LP relaxation 0.66 0.53 0.58 0.76 0.75 0.70
GD 1.59 1.65 1.72 1.80 2.09 2.01

Table 1. Comparison of CPU time cost averaged from 200 runs,
including LP relaxation.

converge is roughly 1.2 minute, while for `0 LP it only takes
no more than 0.5 second.

Inverting Deep Generative models, One layer at a time

D. Conclusion and Future Direction
We introduced a novel algorithm to invert a generative model
through linear programming, one layer at a time, given
(noisy) observations of its output. We prove that for expan-
sive and random Gaussian networks, we can exactly recover
the true latent code in the noiseless setting. For noisy ob-
servations we also establish provable performance bounds.
Our work is different from the closely related (Huang et al.,
2018) since we require less expansion, we bound for `1 and
`∞ norm (as opposed to `2) but we are also limited to inver-
sion, i.e. without a forward operator (while (Huang et al.,
2018) can handle many natural forward operators as long as
they satisfy a specific technical condition).

Empirically we demonstrate good performance, sometimes
outperforming gradient descent when the latent vectors are
high dimensional. We are interested in connecting our anal-
ysis to the framework of Approximate Message Passing
(AMP) and its numerous extensions (Donoho et al., 2009;
Schniter et al., 2016; Metzler et al., 2016) and possibly
leverage from this body of theoretical work to improve our
results.

