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Abstract

Incorporating latent variables in neural machine
translation systems allows explicit representations
for lexical and semantic information. These repre-
sentations help improve general translation qual-
ity, as well as provide more robust longer sentence
and out-of-domain translations. Previous work
has focused on using variational inference with
isotropic Gaussian distributions, which we hy-
pothesize cannot sufficiently encode latent factors
of language which could exhibit multi-modal dis-
tributive behavior. Normalizing flows are an ap-
proach that enable more flexible posterior distribu-
tion estimates by introduce a change of variables
with invertible functions. They have previously
been applied successfully in computer vision to
enable more flexible posterior distributions of im-
age data. In this work, we present our preliminary
results for the effects normalizing flows can have
on existing latent variable neural machine trans-
lation models as a means to improve translation
quality.

1. Introduction
Incorporating latent variables to explicitly capture aspects
of language, such as semantics, have previously been shown
to improve neural machine translation (NMT) quality. This
includes difficult scenarios in machine translation, such as
translating longer sentences better (Zhang et al., 2016; Shah
& Barber, 2018; Su et al., 2018), demonstrating robustness
to domain mis-match between training and test data (Eikema
& Aziz, 2018), as well as enabling word level imputation
for noisy sentences (Shah & Barber, 2018).
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Figure 1. Kernel density estimate contour plots of 10,000 samples
from q(z | x, y) for each intermittent normalizing flow transforma-
tion of the distribution using planar (top) and IAF (bottom) flows.
The sentence pair is “Als ich in meinen 20ern war, hatte ich meine
erste Psychotherapie-Patientin.” (De), translated to “When I was
in my 20s, I saw my very first psychotherapy client.” (En)

Another utility of latent variable NMT systems is encod-
ing lexical variation. This is achieved by sampling from
the latent variables and using beam search to find seman-
tically similar sentences (Schulz et al., 2018; Shen et al.,
2019). This ability to sample latent variables to produce
translations is a valuable feature, because there has been
extensive research showing synthetically generate bi-text
can lead to improved translation system quality (Sennrich
et al., 2015a; Edunov et al., 2018). Depending on the model
formulation, latent variable NMT systems can likely help
build even better machine translation systems by generating
quality synthetic bi-text.

To our knowledge, much of the research in latent variable
neural machine translation (LVNMT) applies amortised vari-
ational inference to learn the posterior distribution of paired
language data. Authors generally have focused on creating
variational auto-encoder type models which optimize the
evidence lower bound (ELBO) (Kingma & Welling, 2014;
Rezende et al., 2014). In the context of translation, this
involves maximizing the log-likelihood of the conditional
distribution p(y|x, z) where y is the target language, x is
the source language, and z is the introduced latent variable.
Authors have assumed the variational posterior distribution
is an isotropic Gaussian and learn a variational distribution
qφ(z | ·) conditioned on different combinations of available
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paired sentences.1

One problem with this approach, which is the primary focus
of this work, is the choice of variational distribution used to
encode information about translation data. A criticism of
variational inference is the limited guarantees on approxi-
mating, even asymptotically, the true posterior distribution.
Particularly in language, there are several empirical findings
which suggest that choosing the isotropic Gaussian as the
variational distribution family may not truly represent latent
aspects of language. One simple example is the power-law
distribution behavior that words exhibit in large corpora of
text (Koehn, 2010). Even at the character level, previous
work in language modeling showed experimental results
that exhibit multi-modal distributive behavior (Ziegler &
Rush, 2019). These results would suggest that assuming
the latent factors follow an isotropic Gaussian distribution
is not representative of the true distributive behavior of lan-
guages. If latent variables are to be more effectively utilized
for machine translation, one needs to consider more flexible
variational distributions.

Normalizing flows represent one variational inference ap-
proach towards producing more accurate posterior distribu-
tion estimates. They accomplish this by transforming a base
distribution into a more complex, possibly multi-modal, dis-
tribution. This change of variables is achieved by using in-
vertible functions to transform samples from a chosen base
distribution (Rezende & Mohamed, 2015). Normalizing
flows have been shown to be helpful in computer vision for
improving image generation (Kingma et al., 2016; Tomczak
& Welling, 2016; Kingma & Dhariwal, 2018; van den Berg
et al., 2018), and Schulz et al. (2018) proposed normalizing
flows as a potential improvement to their work in LVNMT
systems. This variational approach has the added benefit of
empirical findings showing more accurate approximations
of target posterior distributions when such distributions are
known.

We conjecture that normalizing flows are capable of helping
achieve better posterior approximations of language fac-
tors, and that these improved estimates can help improve
the expressiveness of latent codes in machine translation.
Figure 1. shows kernel density estimate contour plots of
samples after applying normalizing flow transformation of
our distribution, as we further explain in Section 5.3.

Overall, we make the following contributions:

1. We discuss the challenges of incorporating normalizing
flows to provide benefit for LVNMT systems.

2. We present preliminary experimental findings on Ger-
man to English translation including results on varying

1 Some condition on both the target and source sentence, others
on the source, or even just the target sentences

sentence length.

3. We visualize the learned posterior distribution of paired
sentences using a 2D latent space to see how the nor-
malizing flows transform the base distribution.

The rest of this paper is organized as follows. In section
2 we discuss related research. In section 3, we review pre-
vious works in latent variable machine translation and, as
part of our work, we implement one such approach as a
probabilistic program. For details on probabilistic program-
ming refer to van de Meent et al. (2018).2 In section 4, we
discuss incorporating normalizing flows into latent variable
machine translations systems and the challenges including
normalizing flows. Section 5 discusses our experimental
results, and we conclude in section 6.

2. Related Work
To our knowledge, the applications of normalizing flows
have been considered sparsely in natural language process-
ing, and largely focused on language modeling. Bowman
et al. (2015) briefly mention normalizing flows in the context
of variational auto-regressive language modeling, but did
not report their empirical findings. Ziegler & Rush (2019)
provides empirical evidence on applying normalizing flows
for character level language modeling. They proposed sev-
eral non-autoregressive models that allow for parallel decod-
ing, and provided evidence on the multi-modal behaviors of
language factors. In this work, we focus on autoregressive
approaches applied to neural machine translations.

3. Latent Variable Neural Machine
Translation

In this section we give background information on the core
aspects of the most successful approaches to neural machine
translation, and ways latent variables have been incorporated
into existing NMT systems.

3.1. Neural Machine Translation

The leading approaches in NMT are autoregressive sequence
to sequence models which include an encoder, decoder, and
a generator neural network. For discussion on improve-
ments to this architecture refer to Bahdanau et al. (2014), or
Koehn, 2017, chapter 13.5 , and for discussion on alternative
architecture choices refer to Koehn, 2017, chapter 13.7.

The encoder is typically a recurrent neural network (RNN),
which takes a source word embedding and previous hidden
state hi−1 as inputs.

2We do not discuss probabilistic programming in this paper,
because our work is an application of such languages instead of
contributions towards improving probabilistic programming.
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hi = RNN(embed(xi), hi−1),∀i ∈ d (1)

The encoder reads the sequence in order to produce hid-
den states hi for each word xi in a sequence of length d.
These states can serve different purposes depending on any
additional NMT design choices considered. The most im-
mediate utility is initializing the hidden state of the decoder,
which is also an RNN, s0 with the final encoder hidden state
hd. The decoder follows a similar procedure in equation 1,
except the inputs are embed(yj−1) and sj−1 instead, for a
sequence of length p.

To decode the target words in a sequence, a generator neural
network is used where the output is the size of the target
language vocabulary. The generator takes at least the de-
coder hidden states as input, although additional inputs can
be included.

p(yj | x, y<j) = generator(sj , ...) (2)

This function represents the conditional probability of each
target word yj conditioned on the entire source sequence x
and previous words y<j .

3.2. Latent Variable Neural Machine Translation

Authors have come up with a number of probabilistic for-
mulations to incorporate latent variables into NMT systems.
One such approach has focused on modeling the discrim-
inative distribution p(y|x) which is the typical modeling
assumption in regular NMT systems (Zhang et al., 2016).

p(y|x) =

∫
z

p(y, z | x)p(z | x)dz (3)

A number of alternatives have also been considered, includ-
ing latent variables at each time step (Schulz et al., 2018;
Su et al., 2018), or instead modeling the joint distribution
p(x, y) (Eikema & Aziz, 2018; Shah & Barber, 2018). For
this work, we consider only the discriminative formulation
presented by Zhang et al. (2016) and leave expanding to
alternative LVNMT formulations as future work.

3.3. Variational Distribution Choice

As can be seen in equation 3, regardless of the model formu-
lation, each model must marginalize out the latent variable
z. This is often intractable, and instead previous works have
focused on incorporating a variational distribution qφ(z | ·)
in order to approximate the true posterior distribution. There
are different ways to condition this distribution, depending
whether there is a global latent variable or latent variables-
over-time. Here, we discuss the case where the distribution
is chosen to be qφ(z|x, y) and is interpreted as the global

semantic latent variable of both source x and target y lan-
guages.

The challenge with this formulation is that it requires having
target sentence y during translation.3 We choose to follow
the approach of Zhang et al. (2016) to address this issue by
parameterizing the prior distribution and at decoding use
the distribution pθ(z | x) instead. The motivation is that
both qφ(z | x, y) and pθ(z | x) were optimized to match
each other such that semantic encoding is preserved in the
parameterized prior distribution.

3.4. Encoding Sentences for Latent Distribution

The last consideration is how to actually encode a sentence
to generate the distribution parameters. Following other
works (Eikema & Aziz, 2018; Shah & Barber, 2018; Zhang
et al., 2016), we first encode both the source x and target y
sentences with an RNN encoder, and produce a Rn vector,
where n is the dimensions of the encoder hidden states. We
then apply a mean pooling operation over each collection of
hidden states for hx1:d and hy1:p.

h̄ =
1

L

L∑
i=1

hi (4)

This produces two vectors h̄x and h̄y which are concate-
nated together z0 = [h̄x; h̄y]. z0 is used to generate the µφ
and σφ of the variational distribution

µφ = Wµφz0 + bµφ , σφ = Wσφz0 + bσφ (5)

Here Wµφ , bµφ , Wσφ , and bσφ are learnable parameters.4

We use these parameters µφ and σφ during training to
sample latent code for a sentence with the reparameter-
ization trick (Kingma & Welling, 2014; Rezende et al.,
2014) and this latent codes z is used as input to the decoder
RNN(sj−1, embed(yj), z).

As previously mentioned, our prior distribution pθ(z | x) is
also parameterized. A similar approach as the one described
for the variational distribution is applied to generate the
prior distribution parameters. The key difference is that we
instead condition only on h̄x to generate the distribution
parameters µθ and σθ and separate learnable parameters
Wµθ , bµθ , Wσθ , and bσθ are introduced into the model.

3Remember that generating y is the objective of translation.
4These parameters could also be expanded to include additional

layers and form a fully-connected neural network instead.
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4. Normalizing Flows for Machine
Translation

In this section we discuss incorporating normalizing flows
into latent variable neural machine translation. We also
discuss some challenges with incorporating normalizing
flows based on the effect they have on the ELBO.

4.1. Applying Flows to Latent Variables

It is relatively easy to incorporate normalizing flows into ex-
isting LVNMT models. During the training procedure, one
only needs to apply k functions fi sequentially to samples
from the base distribution p(z0):

zk = fk ◦ fk−1... ◦ f2 ◦ f1(z0), z0 ∼ p(z0) (6)

Here, ◦ is a shorthand for nested calls of the functions
(f2(f1(f0(z0)))). For our experiments, the base distribution
p(z0) refers to our variational distribution qφ(z | x, y) and
at decode time we use pθ(z | x) which is the same approach
taken by Zhang et al. (2016). For deterministic decoding, we
set z0 = µθ(x) where µθ is produced by our parameterized
prior distribution, and apply normalizing flows on this fixed
value instead of samples from pθ(z0 | x)

4.2. Challenges with Optimization

The one other consideration with the inclusion of normaliz-
ing flows is how they change the ELBO. Here we present
a formulation of the ELBO specific to machine translation
which is based on the derivation from Rezende & Mohamed,
2015, Section 4.2.

Eq(z0 | x,y)

[ U∑
j=1

log pθ(yj | z(k), x, y<j)
]

−KL(qφ(z(0) | x, y)||pθ(z(k) | x))

+ Eqφ(z0 | x,y)

[ K∑
k=1

log

∣∣∣∣ δf (k)δz(k−1)

∣∣∣∣]
(7)

The first term represent maximizing the likelihood of ob-
served sequences i.e. translating data correctly. The other
two terms represent the introduced regularization from the
latent variable z in the model.

The problem with this objective is that the inclusion of this
KL divergence can lead to a problem referred to as ”poste-
rior collapse” (He et al., 2019). This refers to the scenario
where, in order to maximize the ELBO, the variational dis-
tribution parameters, for all the training data, are pushed to
more closely match the prior distribution parameters. In the
typical case where the prior is the unit Gaussian distribution,

this leads to uninformative codes in which case the latent
variable provides no additional information to the model.
We recommend Chen et al. (2016) or Zhao et al. (2017)
which provide more thorough discussions on the subject.

For this work, we address this potential problem with a
previously proposed approach referred to as KL-annealing
(Bowman et al., 2015; Sø nderby et al., 2016). KL-annealing
is the process of annealing the weight associated to the
divergence term in the ELBO from 0.0 (no influence) to 1.0
(original weight). We follow previous research by using
a linear annealing schedule to update the weight of our
regularization terms after each mini-batch update until it
reaches 1.0 and the original ELBO objective is optimized
for the remaining duration of training.

4.3. Choice of Normalizing Flows

In the normalizing flows literature, the general trend is to
find classes of invertible functions that have more compu-
tationally efficient determinants of the Jacobian. This has
lead to a variety of normalizing flows available to select
from which come with different trade-offs between diverse
transformations and fast computation. For our experiments
we consider planar flows which are discussed by Rezende &
Mohamed (2015) and inverse autoregressive flows discussed
by Kingma et al. (2016). We leave exploring alternative
choices of flows as future work.

5. Preliminary Experiments
In this section we share our preliminary experimental results
on the efficacy of normalizing flows for LVNMT systems.
We focus mostly on translation quality as this is the primary
usage for such systems. We also visualize the latent space
to better understand how normalizing flows can affect the
posterior distribution for latent variables.

We specify our models as probabilistic programs using Pyro
(Bingham et al., 2018) and run our experiments with Pyro’s
implementations of normalizing flows. As a starting place of
our implementation, we build our models from the tutorial
code of Bastings (2018). We train multiple LVNMT models
based on the approach considered in Zhang et al. (2016)
with an increasing number of normalizing flows and greedily
decode translations. To evaluate performance, we use the
IWSLT 2016 data sets for German→ English translation
available through the torchtext library.5 The BLEU score
was measured using Sacrebleu (Post, 2018).

We represent each language’s vocabulary with 20,000 byte-
pair encodings (BPE) using the SentencePiece API. 6 For
details on the motivations and description of BPE in the

5https://torchtext.readthedocs.io/en/latest/
6https://github.com/google/sentencepiece
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Table 1. Best performing models across experiments for German
→ English translation for different choices of number of flows and
latent dimension size. We acquire 0.327 above baseline BLEU
with latent dimension size = 2 and 0.165 above baseline with latent
dimension size = 50. Bolded scores are best results with each
latent dimension size.

FLOW TYPE # OF FLOWS LATENT DIMS BLEU
BASELINE 0 2 19.852
PLANAR 1 2 20.180
IAF 8 2 19.993
BASELINE 0 50 19.807
PLANAR 1 50 19.972
IAF 32 50 19.667

context of translation, refer to Sennrich et al., 2015b, Section
3.2.

5.1. General Translation

Our first analysis considers just the general quality of trans-
lation when varying the number and type of flows. We com-
pare results based on BLEU for each of our trained LVNMT
systems with and without normalizing flows. Figure 2 shows
the results based on the BLEU score for LVNMT models
trained with an increasing number of normalizing flows.
This plot shows the performances of models where the latent
dimension was set to 50. The reader will notice we include
the performance of 2 runs of our baseline. We report the
baseline twice to show the discrepancy in performance as
consideration for our observations as these are preliminary
findings. These baselines are reported as part of each set
of flow experiments even though they are samples from the
Gaussian base distribution.

One key observation from Figure 2 is that it appears planar
flows perform better than IAF flows despite the number of
flows. This suggests that the choice of normalizing flows
chosen for LVNMT systems is an important decision. One
explanation for this discrepancy is likely related to the ex-
pressiveness of each of the considered flows. IAFs were
proposed as a more flexible, scalable normalizing flow. In
contrast, planar flows are relatively simple transformations
making local changes in the distribution space. These find-
ings would seem to suggest that the distributions of latent
variables in LVNMT systems do not require much trans-
formation from the original base distribution, although it
should be noted our best performances did include at least a
single flow.

These findings are consistent even with a change of the di-
mensions of the latent variables. Table 1 shows the best
performances across all our experiments for varying the
number of latent variables and number of flows. As previ-
ously mentioned, it seems normalizing flows can provide
small improvements (0.327 BLEU, sizeable for MT) par-

ticularly when choosing a much smaller sized latent space.
One reason we suspect a smaller latent space helped was
because, particularly in the case of Gaussian distributions,
the impact of the KL term is connected to the dimensions of
the latent vector. By having a smaller latent space, the loss
from the regularization terms in the ELBO contributes less
to the loss while still providing useful latent information.
However, this may also negatively affect the smooth inter-
polation of samples in the latent space as the reconstruction
loss becomes the predominant factor during optimization.

To fully realize the potential of normalizing flows, additional
experiments need to be conducted. One reason for this is
because of the size of the chosen dataset for our preliminary
experiments. Relatively speaking, typical NMT systems
require much larger bi-text corpora to achieve state-of-the
art performance (Koehn, 2010; 2017). As normalizing flows
introduce additional learning parameters, it is possible our
normalizing flow LVNMT model has an insufficient amount
of data to see more of a performance benefit.

Figure 2. Translation results for German → English with latent
dimensions set to 50. The number of flows is on a log scale, actual
number of flows are n = 1, 2, 4, 8, 16, 32

5.2. Long Sentence Translation

Figure 3 show our results for the BLEU score of sentences
of varying length. This plot was again using our models
trained with the latent dimensions set to 50. The BLEU
score was calculated based on sentence lengths l within
ranges of [l − 4, l].

We found mixed results where in some cases it seems nor-
malizing flows on LVNMT models are capable of improving
performance on longer sentence translations compared to
the baselines. Restricting our comparison to the normalizing
flows models, we see that for most sentence lengths, planar
flows are more effective than IAF flows. Particularly for sen-
tence lengths of 10 - 40 words, planar flows outperform our
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Figure 3. Comparison of BLEU score for sentences of different
lengths for best performing models with and without normalizing
flows on German → English translation

best IAF flows model as well as for the longest sentences.

However, as we see a discrepancy in performance in the
settings with 0 normalizing flows, we report these observa-
tions with caution. It is possible these findings could also
just be a result of the stochastic behavior in the optimization
process by sampling latent variable z. Clearly though we do
see that our normalizing flows models do offer comparable
performance to the baseline, suggesting further investigation
into their utility for longer sentence translation is warranted.

5.3. Visualizing Latent Space

To get a sense of the way the latent space may look like with
the addition of normalizing flows, we trained our LVNMT
model with the latent dimensions set to 2 in order to visu-
alize the transformations. These models were otherwise
trained the same way as the models reported for the general
translation systems experiments.

Figure 1 shows our findings for a translation pair from the
evaluation set using our LVNMT models with 8 normalizing
flows. As we can see, the transformations push around the
probability distribution mass, but much of the probability
density centers at specific points despite the chosen normal-
izing flow. This would suggest that the introduced latent
variables exhibit uni-modal distributive behavior, contrary
to our hypothesis of more multi-modal distributions.

These plots also help illustrate our conclusions in the pre-
vious sections on translation quality. The IAF flows trans-
forms the distribution space much more drastically than the
planar flows which otherwise only minutely shifts the distri-
bution. Despite the IAF producing more intricate posterior
distributions of the latent variable, our results for translation
quality would suggest these more intricate distributions are

not necessarily helpful to translation quality.

5.4. Discussion

Our results suggest that incorporating normalizing flows
into latent variable machine translation systems may pro-
vide some improvement. Although the gains we report are
small, up to 0.327 BLEU, they are still sizeable for MT. We
couch these results with caution, however. By visualizing
the latent space, it seems that the information encoded in
the latent variable may indeed simply exhibit a uni-modal
distribution. Overall, however, we suspect there is potential
utility for normalizing flows in machine translation. As we
have discussed, larger scale data sets need to be utilized to
investigate whether the limitation is available bi-text. We
also previously mentioned issues with the ELBO when in-
corporating normalizing flows and further investigation is
needed into it’s impact on the loss.

One challenge with a machine translation system is dealing
with out of domain data, including needing to translate data
from different varieties or dialects within the same language
(Zbib et al., 2012). One cited application for latent variables
is helping regularize NMT systems to be more robust to
unseen data (Eikema & Aziz, 2018). In the future, we
intend to evaluate the robustness of our normalizing flow
LVNMT models against the baseline LVNMT in the context
of out of domain/language variety data.

6. Conclusion
In this paper, we have discussed the general design decisions
when specifying latent variable neural machine translation
systems. We also presented our preliminary findings when
incorporating normalizing flows into such models. Our find-
ings suggest that LVNMT systems can benefit from incor-
porating normalizing flows, but this improvement depends
on the choice of normalizing flow. From these findings,
we believe further research on the topic is warranted, and
that normalizing flows have potential to help improve future
machine translation systems.
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A. Supplementary Material
A.1. Experimental Details

We list the hyperparameters and optimization parameters we used in our experiments in table A.1.

OPTIMIZATION PARAMETERS
OPTIMIZER ADAM

LEARNING RATE 0.0003
KL ANNEALING SCHEDULE 30,000 STEPS

CLIP NORM 20.0
MINI BATCH SIZE 32

NUMBER OF SAMPLES (ELBO) 1
MODEL PARAMETERS

SOURCE EMBEDDING SIZE 300
TARGET EMBEDDING SIZE 300

ENCODER HIDDEN DIMENSIONS 256
NUMBER OF ENCODER LAYERS 2
DECODER HIDDEN DIMENSIONS 256
NUMBER OF DECODER LAYERS 2

DROPOUT 0.5
Z DIM (LATENT VARIABLE) 2 OR 50

GLOBAL ATTENTION MECHANISM
KEY SIZE 512

QUERY SIZE 256
I.A.F DETAILS

AUTOREGRESSIVE NN 150 UNITS


