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Abstract
The goal of unpaired cross-domain translation is
to learn useful mappings between two domains,
given only unpaired sets of datapoints from these
domains. While this formulation is highly under-
constrained, recent work has shown that it is possi-
ble to learn mappings useful for downstream tasks
by encouraging approximate cycle consistency in
the mappings between the two domains (Zhu et al.
, 2017b). In this work, we propose AlignFlow,
a framework for unpaired cross-domain transla-
tion that ensures exact cycle consistency in the
learned mappings. Our framework uses a nor-
malizing flow model to specify a single invertible
mapping between the two domains. In contrast
to prior works in cycle-consistent translations,
we can learn AlignFlow via adversarial training,
maximum likelihood estimation, or a hybrid of
the two methods. Theoretically, we derive con-
sistency results for AlignFlow which guarantee
recovery of desirable mappings under suitable as-
sumptions. Empirically, AlignFlow demonstrates
significant improvements over relevant baselines
on image-to-image translation and unsupervised
domain adaptation tasks on benchmark datasets.

1. INTRODUCTION
Given data from two domains, cross-domain translation
refers to the task of learning a mapping from one domain
to another, such as translating text across two languages or
image colorization. This ability to learn a meaningful align-
ment between two domains has a broad range of applications
across machine learning, including relational learning (Kim
et al. , 2017), domain adaptation (Taigman et al. , 2016;
Hoffman et al. , 2017; Bousmalis et al. , 2017), image and
video translation for computer vision (Isola et al. , 2017;
Wang et al. , 2018), and machine translation for natural
language processing (Lample et al. , 2017).
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Broadly, there are two learning paradigms for cross-domain
translation: paired and unpaired. In paired cross-domain
translation, we assume access to pairs of datapoints across
the two domains, e.g., black and white images and their
respective colorizations. However, paired data can be ex-
pensive to obtain or may not even exist, as in neural style
transfer (Gatys et al. , 2015) where the goal is to translate
across the works of two artists that typically do not exhibit
a direct correspondence.

Unpaired cross-domain translation tackles this regime
where paired data is not available and learns an alignment
between two domains given only unpaired sets of datapoints
from the domains. Formally, we seek to learn a joint dis-
tribution over two domains, say A and B, given samples
only from the marginal distributions over A and B. Cycle-
GAN (Zhu et al. , 2017b), a highly successful approach to
this problem, learns a pair of conditional generative mod-
els, say GA→B and GB→A, to match the marginal distri-
butions over A and B via an adversarial objective (Good-
fellow et al. , 2014). The marginal matching constraints
alone are insufficient to learn the desired joint distribution,
both in theory and practice. To further constrain the prob-
lem, an additional desideratum is imposed in the form of
cycle-consistency. That is, given any datapoint A = a, the
cycle-consistency term in the learning objective prefers map-
pings GA→B and GB→A such that GB→A(GA→B(a)) ≈ a.
Symmetrically, cycle-consistency in the reverse direction
implies GA→B(GB→A(b)) ≈ b for all datapoints B = b.
Intuitively, this encourages the learning of approximately
bijective mappings.

While empirically effective, the CycleGAN objective only
imposes a soft cycle-consistency penalty and provides no
guarantee that GA→B and GB→A are true inverses of each
other. A natural question, then, is whether the cycle-
consistency objective can be replaced with a single, invert-
ible model GA→B. Drawing inspiration from the litera-
ture on invertible generative models (Rezende & Mohamed,
2015; Dinh et al. , 2014; 2017; Kingma & Dhariwal, 2018),
we propose AlignFlow, a learning framework for cross-
domain translations which uses normalizing flow models to
represent the mappings. In AlignFlow, we compose a pair
of invertible flow models GZ→A and GZ→B, to represent
the mapping GA→B = GZ→B ◦G−1Z→A. Here, Z is a shared
latent space between the two domains. Since composition
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of invertible mappings preserves invertibility, the mapping
GA→B is invertible and the reverse mapping from B→ A is
simply given as GB→A = G−1A→B. Hence, AlignFlow guar-
antees exact cycle-consistency by design and simplifies the
standard CycleGAN learning objective by learning a single,
invertible mapping.

Furthermore, AlignFlow provides flexibility in specifying
the training objective. In addition to adversarial training, we
can also specify a prior distribution over the latent variables
Z and train the two component models GZ→B and GZ→A
via maximum likelihood estimation (MLE). MLE is statis-
tically efficient, exhibits stable training dynamics, and can
have a regularizing effect when used in conjunction with
adversarial training of invertible generative models (Grover
et al. , 2018).

2. PRELIMINARIES
In this section, we discuss the necessary background and no-
tation on generative adversarial networks, normalizing flows,
and cross-domain translations using CycleGANs. Unless
explicitly stated otherwise, we assume probability distribu-
tions admit absolutely continuous densities on a suitable
reference measure. We use uppercase notation X,Y,Z to
denote random variables, and lowercase notation x, y, z to
denote specific values in the italicized corresponding sample
spaces X ,Y,Z .

2.1. GENERATIVE ADVERSARIAL NETWORKS

A generative adversarial network (GAN) is a latent variable
model which specifies a deterministic mapping h : Z → X
between a set of latent variables Z and a set of observed
variables X (Goodfellow et al. , 2014). In order to sample
from GANs, we need a prior density over Z that permits ef-
ficient sampling. A GAN generator can also be conditional,
where the conditioning is on another set of observed vari-
ables (and optionally the latent variables Z as before) (Mirza
& Osindero, 2014).

A GAN is trained via adversarial training, wherein the gener-
ator h plays a minimax game with an auxiliary critic C. The
goal of the critic C : X → R is to distinguish real samples
from the observed dataset with samples generated via h. The
generator, on the other hand, tries to generate samples that
can maximally confuse the critic. Many learning objectives
have been proposed for adversarial training, including those
based on f-divergences (Nowozin et al. , 2016), Wasserstein
Distance (Arjovsky et al. , 2017), and maximum mean dis-
crepancy (Li et al. , 2017). The generator and the critic are
both parameterized by deep neural networks and learned via
alternating gradient-based optimization. Because adversar-
ial training only requires samples from the generative model,
it can be used to train generative models with intractable

or ill-defined likelihoods (Mohamed & Lakshminarayanan,
2016). In practice, such likelihood-free methods give excel-
lent performance on sampling-based tasks unlike the alterna-
tive maximum likelihood estimation-based training criteria
for learning generative models. However, these models are
harder to train due to the alternating minimax optimization
and suffer from issues such as mode collapse (Goodfellow,
2016).

2.2. NORMALIZING FLOWS

Normalizing flows represent a latent variable generative
model that specifies an invertible mapping h : Z → X
between a set of latent variables Z and a set of observed
variables X. Let pX and pZ denote the marginal densities
defined by the model over X and Z respectively. Using the
change-of-variables formula, the marginal densities can be
related as:

pX(x) = pZ(z)

∣∣∣∣det∂h−1∂X

∣∣∣∣
X=x

(1)

where z = h−1(x) due to the invertibility constraints. Here,
the second term on the RHS corresponds to the absolute
value of the determinant of the Jacobian of the inverse trans-
formation and signifies the shrinkage/expansion in volume
when translating across the two sample spaces.

For evaluating likelihoods via the change-of-variables for-
mula, we require efficient and tractable evaluation of the
prior density, the inverse transformation h−1, and the de-
terminant of its Jacobian of h−1. To draw a sample from
this model, we perform ancestral sampling, i.e., we first
sample a latent vector z ∼ pZ(z) and obtain the sampled
vector as given by x = h(z). This requires the ability
to efficiently: (1) sample from the prior density and (2)
evaluate the forward transformation h. Many transforma-
tions parameterized by deep neural networks that satisfy
one or more of these criteria have been proposed in the re-
cent literature on normalizing flows, e.g., NICE (Dinh et al.
, 2014) and Autoregressive Flows (Kingma et al. , 2016;
Papamakarios et al. , 2017). By suitable design of trans-
formations, both likelihood evaluation and sampling can be
performed efficiently, as in Real-NVP (Dinh et al. , 2017).
Consequently, a flow model can be trained efficiently via
maximum likelihood estimation as well as likelihood-free
adversarial training (Grover et al. , 2018).

2.3. DOMAIN TRANSLATIONS VIA CYCLEGAN

Consider two multi-variate random variables A and B with
domains specified asA ⊆ Rn and B ⊆ Rn respectively. Let
p∗A,B denote the joint distribution over these two variables. In
the unpaired cross-domain translation setting, we are given
access to a finite datasets DA and and DB, sampled indepen-
dently from the two unknown corresponding (marginal) data
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distributions p∗A and p∗B respectively. Using these datasets,
the goal is to learn the conditional distributions p∗A|B and
p∗B|A. Without any paired data, the problem is undercon-
strained (even in the limit of infinite paired data) since the
conditionals can only be derived from p∗A,B, but we only
have data sampled from the marginal densities. To address
this issue, CycleGAN introduced additional constraints that
have proven to be empirically effective in learning mappings
that are useful for downstream tasks. We now proceed by
describing the CycleGAN framework.

If we assume the conditional distributions for A|B and B|A
are deterministic, the conditionals can alternatively be repre-
sented as cross-domain mappings GA→B : A → B and
GB→A : B → A. A CycleGAN uses a pair of condi-
tional GANs to translate data from two domains (Zhu et al.
, 2017b). It consists of the following components:

1. A conditional GAN GA→B : A → B that takes as
input data from domain A and maps it to domain B.
The mapping GA→B is learned adversarially with the
help of a critic CB : B → R trained to distinguish
between real and synthetic data (generated via GA→B)
from domain B.

2. Symmetrically, a conditional GAN GB→A : B → A
and a critic CA : A → R for adversarial learning of
the reverse mapping from B to A.

Any suitable GAN loss can be substituted in the above
objective, e.g., Wasserstein GAN (Arjovsky et al. , 2017).
For the standard cross-entropy based GAN loss, the critic
outputs a probability of a datapoint being real and optimizes
the following objective:

LGAN(CA, GB→A)

:= Ea∼p∗A [logCA(a)] + Eb∼p∗B [log(1− CA(GB→A(b)))].

(2)

Additionally, semantically meaningful mappings can be
learned via a pair of conditional GANs GA→B and GB→A
that are encouraged to be cycle consistent. Cycle consistency
encourages the data translated from domain A to B via
GA→B to be mapped back to the original datapoints in A
via GB→A. That is, GB→A(GA→B(a)) ≈ a for all a ∈ A.
Formally, the cycle-consistency loss for translation from A
to B and back is defined as:

LCycle(GB→A, GA→B)

:= Ea∼p∗A [‖GB→A(GA→B(a))− a‖1] (3)

Symmetrically, an additional cycle consistency term
LCycle(GA→B, GB→A) in the reverse direction encourages
GA→B(GB→A(b)) ≈ b for all b ∈ B.

A B

Z

Figure 1. Bayesian network for AlignFlow.

The full objective optimized by a CycleGAN is given as:

LCycleGAN(GB→A, CA, GA→B, CB;λA→B, λB→A)

:= LGAN(CA, GB→A) + LGAN(CB, GA→B)

+ λA→BLCycle(GB→A, GA→B)

+ λB→ALCycle(GA→B, GB→A) (4)

where λA→B and λB→A are hyperparameters controlling
the relative strength of the cycle consistent terms. The
objective is minimized w.r.t. GB→A, GA→B and maximized
w.r.t. CA, CB. In practice, the expectations w.r.t. p∗A and
p∗B in the individual loss terms are approximated via the
datasets DA and DB respectively.

The use of cycle consistency has indeed been shown empiri-
cally to be a good inductive bias for learning cross-domain
translations. However, it necessitates a careful design of
the loss function that could involve a trade-off between the
adversarial training and cycle consistency terms in the ob-
jective in Eq. 4. To stabilize training and achieve good
empirical performance, Zhu et al. (2017b) proposes a range
of techniques such as the use of an identity loss in the above
objective.

3. THE ALIGNFLOW FRAMEWORK
In this section, we present the AlignFlow framework for
learning cross-domain translations between two domains
A and B. We will first discuss the model representation,
followed by the learning and inference procedures for Align-
Flow. Finally, we will present a theoretical result analyzing
the proposed framework.

3.1. REPRESENTATION

We will use a graphical model to represent the relationships
between the domains to be translated. Consider a Bayesian
network between two sets of observed random variables
A and B with domains A and B respectively along with a
parent set of unobserved random variable Z with domain Z .
The network is illustrated in Figure 1.

The latent variables Z indicate a shared feature space be-
tween the observed variables A and B, which will be ex-
ploited later for efficient learning and inference. While Z is
unobserved, we assume a prior density pZ over these vari-
ables, such as an isotropic Gaussian. The marginal densities
over A and B are not known, and will be learned using the
unpaired data from the two domains.
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Finally, to specify the joint distribution between these sets
of variables, we constrain the relationship between A and
Z, and B and Z to be invertible. That is, we specify map-
pings GZ→A and GZ→B such that the respective inverses
GA→Z = G−1Z→A and GB→Z = G−1Z→B exist. In the pro-
posed AlignFlow framework, we specify the cross-domain
mappings as the composition of two invertible mappings:

GA→B = GZ→B ◦GA→Z (5)
GB→A = GZ→A ◦GB→Z. (6)

Since composition of invertible mappings is invertible, both
GA→B andGB→A are invertible. In fact, it is straightforward
to observe that GA→B and GB→A are inverses of each other:

G−1A→B = (GZ→B ◦GA→Z)
−1 = G−1A→Z ◦G

−1
Z→B

= GZ→A ◦GB→Z = GB→A. (7)

Hence, AlignFlow only needs to specify the forward map-
ping from one domain to another. The corresponding map-
ping in the reverse direction is simply given by the inverse
of the forward mapping. Such a choice permits increased
flexibility in specifying learning objectives and performing
efficient inference, which we discuss next.

3.2. LEARNING ALGORITHMS & OBJECTIVES

From a probabilistic standpoint, the cross-domain transla-
tion problem requires us to learn a conditional distribution
p∗A|B over A and B given data sampled from the correspond-
ing marginals p∗A and p∗B.

We now discuss two methods to learn a mapping from
B → A such that the resulting marginal distribution over A,
denoted as pA is close to p∗A. Unless mentioned otherwise,
all our results that hold for a particular domain A will have
a natural counterpart for the domain B, by the symmetrical
nature of the problem setup and the AlignFlow framework.

Adversarial Training. A flow model representation per-
mits efficient ancestral sampling. Hence, a likelihood-free
framework to learn the conditional mapping from B to A is
to perform adversarial training similar to a GAN. That is,
we introduce a critic CA that plays a minimax game with
the generator mapping GB→A. The critic CA distinguishes
real samples a ∼ p∗A with the generated samples GB→A(b)
for b ∼ p∗B. An example GAN loss is illustrated in Eq. 2.

Alternatively if our goal is to only learn a generative model
with the marginal density close to p∗A, then we can choose to
simply learn the mapping GZ→A. As shown in Grover et al.
(2018), the mapping GZ→A along with an easy-to-sample
prior density pZ itself specifies a latent variable model that
can learned via an adversarial training objective, similar to
the one illustrated in Eq. 2 or any other GAN loss.

Maximum Likelihood Estimation. Flow models can
also be trained via maximum likelihood estimation (MLE).
Hence, an MLE objective for learning the mapping GZ→A
maximizes the likelihood of the dataset DA:

LMLE(GZ→A) := Ea∼p∗A [log pA(a)] (8)

where pA(a) = pZ(G
−1
A→Z(a))

∣∣∣∣det∂G−1A→Z

∂A

∣∣∣∣
A=a

.

As in the previous cases, the expectation w.r.t. p∗A is ap-
proximated via Monte Carlo averaging over the dataset DA.
Besides efficient evaluation of the inverse transformations
and its Jacobian, this objective additionally requires a prior
with a tractable density, e.g. an isotropic Gaussian.

Cycle-consistency. So far, we have only discussed objec-
tives for modeling the marginal density over A (and symmet-
rical learning objectives exist for B). However, as discussed
previously, the marginal densities alone do not guarantee
learning a mapping that is useful for downstream tasks.

Cycle consistency, as proposed in CycleGAN (Zhu et al.
, 2017b), is a highly effective learning objective that en-
courages learning of meaningful cross-domain mappings.
For AlignFlow, we observe that cycle consistency is exactly
satisfied. Formally, we have the following result:

Proposition 1. Let G denote the class of invertible map-
pings represented by an arbitrary AlignFlow architecture.
For any GB→A ∈ G, we have:

LCycle(GB→A, GA→B) = 0 (9)
LCycle(GA→B, GB→A) = 0 (10)

where GA→B = G−1B→A by design.

The proposition follows directly from the invertible design
of the AlignFlow framework (Eq. 7).

Overall objective. In AlignFlow, we optimize a combina-
tion of the adversarial learning objective and the maximum
likelihood objective.

LAlignFlow(GB→A, CA, CB;λA, λB)

:= LGAN(CA, GB→A) + LGAN(CB, GA→B)

− λALMLE(GZ→A)− λBLMLE(GZ→B) (11)

where λA ≥ 0 and λB ≥ 0 are hyperparameters that re-
flect the strength of the MLE terms for domains A and
B respectively. The AlignFlow objective is minimized
w.r.t. the parameters of the generator GA→B and maximized
w.r.t. parameters of the critics CA and CB. Notice that
we have expressed LAlignFlow as a function of the critics
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A B

YA YB

GA→B

GB→ACA CB

(a) CycleGAN

A B

Z

YA YB

GA→Z = G−1Z→A GB→Z = G−1Z→B

CA CB

(b) AlignFlow

Figure 2. CycleGAN v.s. AlignFlow. Unlike CycleGAN, AlignFlow specifies a single, invertible mapping GA→Z ◦G−1
B→Z that is exactly

cycle-consistent, represents a shared latent space Z between the two domains, and can be trained via both adversarial training and exact
maximum likelihood estimation. Double-headed arrows in AlignFlow denote invertible mapping. YA and YB are random variables
denoting the output of the critics used for adversarial training.

CA, CB and only GB→A since the latter also encompasses
the other parametric functions appearing in the objective
(GA→B, GZ→A, GZ→B) via the invertibility constraints in
Eqs. 5-7. For different choices of λA and λB, we cover the
following three cases:

1. Adversarial training only: For λA = λB = 0, we
recover the CycleGAN objective in Eq. 4, with the
additional benefits of exact cycle consistency and a
single invertible generator. In this case, the prior over
Z plays no role in learning.

2. MLE only: On the other extreme for large values of
λA, λB such that λA = λB →∞, we can perform pure
maximum likelihood training to learn the invertible
generator. Here, the critics CA, CB play no role since
the adversarial training terms are ignored in Eq. 11.

3. Hybrid: For any finite, non-zero value of λA, λB, we
obtain a hybrid objective where both the adversarial
and MLE terms are accounted for during learning.

3.3. INFERENCE

AlignFlow can be used for both conditional and uncondi-
tional sampling at test time. For conditional sampling, we
are given a datapoint b ∈ B and we can draw the correspond-
ing cross-domain translation in domain A via the mapping
GB→A.

For unconditional sampling, we require λA 6= 0 since doing
so will activate the use of the prior pZ via the MLE terms in
the learning objective. Thereafter, we can obtain samples
by first drawing z ∼ pZ and then applying the mapping
GZ→A to z. Furthermore, the same z can be mapped to
domain B via GZ→B. Hence, we can sample paired data
(GZ→A(z), GZ→B(z) given z ∼ pZ.

3.4. COMPARISON WITH CYCLEGAN

AlignFlow differs from CycleGAN with respect to the model
family as well as the learning algorithm and inference ca-
pabilities. We illustrate and compare both models in Fig-
ure 2. CycleGAN parameterizes two independent mappings
GA→B and GB→A, whereas AlignFlow only specifies a sin-
gle, invertible mapping. Learning in a CycleGAN is re-
stricted to an adversarial training objective along with a
cycle-consistent loss term, whereas AlignFlow is exactly
consistent and can be trained via adversarial learning, MLE,
or a hybrid. Finally, inference in CycleGAN is restricted
to conditional sampling since it does not involve any la-
tent variables Z with easy-to-sample prior densities. As
described previously, AlignFlow permits both conditional
and unconditional sampling.

4. THEORETICAL ANALYSIS
For finite non-zero values of λA and λB, the AlignFlow
objective consists of three parametric models: one generator
GB→A ∈ G, and two critics CA ∈ CA, CB ∈ CB. Here,
G, CA, CB denote model families specified e.g., via deep
neural network based architectures. In this section, we
analyze the optimal solutions to these parameterized models
within well-specified model families.

4.1. MARGINAL-CONSISTENCY

Our first result characterizes the conditions under which the
optimal generators exhibit marginal-consistency for the data
distributions defined over the domains A and B.

Definition 1. Let pX,Y denote the joint distribution between
two domainsX andY . An invertible mappingGY→X : Y →
X is marginally-consistent w.r.t. two arbitrary distributions
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(pX, pY) iff for all x ∈ X , y ∈ Y:

pX(x) =

{
pY(y)

∣∣∣det∂GY→X
−1

∂Y

∣∣∣
Y=y

, if x = GY→X(y)

0, otherwise.
(12)

Next, we show that AlignFlow is marginally-consistent for
well-specified model families.

Lemma 1. Let GA and GB denote the class of invertible map-
pings represented by the AlignFlow architecture for map-
ping Z→ A and Z→ B. For a given choice of prior distri-
bution pZ, if there exist mappings G∗Z→A ∈ GA, G

∗
Z→B ∈ GB

that are marginally consistent w.r.t. (p∗A, pZ) and (p∗B, pZ)
respectively, then the mapping G∗B→A = G∗Z→A ◦G∗

−1

Z→B is
marginally-consistent w.r.t. (p∗A, p

∗
B).

The result follows directly from Definition 1 and change-of-
variables applied to the mapping G∗B→A = G∗Z→A ◦G∗

−1

Z→B.

Theorem 1. Assume that the model families for the critics
CA : A → [0, 1] and CB : B → [0, 1] are the set of all
measurable functions for the cross-entropy GAN objective.
Then, G∗B→A (as defined in Lemma 1) globally minimizes
the AlignFlow objective in Eq. 11 for any value of λA ≥
0, λB ≥ 0.

Proof. See Appendix A.1.

Note that marginally-consistent mappings w.r.t. a target
data distribution and a prior density need not be unique.
While an invertible model family mitigates the undercon-
strained nature of the problem, it does not provably elim-
inate it. We provide some non-identifiable constructions
in Appendix A.3 and leave the exploration of additional
constraints that guarantee identifiability to future work.

4.2. OPTIMAL CRITICS

Unlike standard adversarial training of an unconditional
normalizing flow model (Grover et al. , 2018; Danihelka
et al. , 2017), the AlignFlow model involves two critics.
Here, we are interested in characterizing the dependence
of the optimal critics for a given invertible mapping GA→B.
Consider the AlignFlow framework where the GAN loss
terms in Eq. 11 are specified via the cross-entropy objective
in Eq. 2. For this model, we can relate the optimal critics
using the following result.

Theorem 2. Let p∗A and p∗B denote the true data densities
for domains A and B respectively. Let C∗A and C∗B denote
the optimal critics for the AlignFlow objective with the
cross-entropy GAN loss for any fixed choice of the invertible

mapping GA→B. Then, we have for any a ∈ A:

C∗A(a) =
C∗B(b)p

∗
A(a)

p∗A(a) + p∗B(b)(1− C∗B(b))
∣∣∣det∂G−1

A→B
∂A

∣∣∣
A=a

(13)

where b = GA→B(a).

Proof. See Appendix A.2.

In essence, the above result shows that the optimal critic
for one domain, w.l.o.g. say A, can be directly obtained via
the optimal critic of another domain B for any choice of the
invertible mapping GA→B, assuming one were given access
to the data marginals p∗A and p∗B.

5. EXPERIMENTS
In this section, we empirically evaluate AlignFlow for
image-to-image translation and unsupervised domain adap-
tation. For both these tasks, the most relevant baseline is
CycleGAN. Extensions to CycleGAN that are complemen-
tary to our work are excluded for comparison to ensure a
controlled evaluation. We discuss these extensions in detail
in Section 6. In all our experiments, we specify the Align-
Flow architecture based on the invertible transformations
introduced in Real-NVP (Dinh et al. , 2017). For experimen-
tal details beyond those stated below, we refer the reader to
Appendix B.

5.1. IMAGE-TO-IMAGE TRANSLATION

We evaluate AlignFlow on three image-to-image translation
datasets used by Zhu et al. (2017b): Facades, Maps, and
CityScapes (Cordts et al. , 2016). These datasets are cho-
sen because they provide aligned image pairs, so one can
quantitatively evaluate unpaired image-to-image translation
models via a distance metric such as mean squared error
(MSE) between generated examples and the corresponding
ground truth. Note that we restrict ourselves to unpaired
translation, so the pairing information is omitted during
training and only used for evaluation.

While MSE can have limitations, we follow prior evaluation
protocols and report the MSE for translations on the test
sets after cross-validation of hyperparameters in Table 1.
For hybrid models, we set λA = λB. We observe that
while learning AlignFlow via adversarial training or MLE
alone is not as competitive as CycleGAN, hybrid training of
AlignFlow significantly outperforms CycleGAN in almost
all cases. Specifically, we observe that MLE alone typically
performs worse than adversarial training, but together both
these objectives seem to have a regularizing effect on each
other. Qualitative evaluation of the reconstructions for all
datasets is deferred to Appendix B.
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Table 1. Mean Squared Error (MSE) comparing CycleGAN and varaints of AlignFlow on paired test sets. MSE is computed pixelwise
after normalizing images to (−1, 1).

Dataset Model MSE (A→ B) MSE (B→ A)

Facades CycleGAN 0.7129 0.3286
AlignFlow (Adversarial only) 0.6727 0.2679
AlignFlow (Hybrid) 0.5801 0.2512
AlignFlow (MLE only) 0.9014 0.5960

Maps CycleGAN 0.0245 0.0953
AlignFlow (Adversarial only) 0.0385 0.1123
AlignFlow (Hybrid) 0.0209 0.0897
AlignFlow (MLE only) 0.0452 0.1746

CityScapes CycleGAN 0.1252 0.1200
AlignFlow (Adversarial only) 0.2569 0.2196
AlignFlow (Hybrid) 0.1130 0.1462
AlignFlow (MLE only) 0.2526 0.2272

Table 2. Test classification accuracies for domain adaptation from source→target. The source only and target only models directly use
classifiers trained on the source and target datasets respectively.

Model MNIST→USPS USPS→MNIST SVHN→MNIST

source only 82.2 ± 0.8 69.6 ± 3.8 67.1 ± 0.6
ADDA (Tzeng et al. , 2017) 89.4 ± 0.2 90.1 ± 0.8 76.0 ± 1.8
CyCADA + CycleGAN 95.6 ± 0.2 96.5 ± 0.1 90.4 ± 0.4
CyCADA + AlignFlow 96.2 ± 0.2 96.7 ± 0.1 91.0 ± 0.3

target only 96.3 ± 0.1 99.2 ± 0.1 99.2 ± 0.1

5.2. UNSUPERVISED DOMAIN ADAPTATION

The setup for unsupervised domain adaptation (Saenko et al.
, 2010) is as follows. We are given data from two related
domains: a source and a target domain. For the source, we
have access to both the input datapoints and their labels.
For the target, we are only provided with input datapoints
without any labels. Using the available data, the goal is to
learn a classifier for the target domain.

A variety of algorithms have been proposed for the above
task which seek to match pixel-level or feature-level distri-
butions across the two domains. One such model relevant
to this experiment is Cycle-Consistent Domain Adaptation
(CyCADA) (Hoffman et al. , 2017). CyCADA first learns
a cross-domain translation mapping from source to target
domain via CycleGAN. This mapping is used to stylize the
source dataset into the target domain, which is then subject
to additional feature-level and semantic consistency losses
for learning the target domain classifier (Ganin & Lempitsky,
2014; Tzeng et al. , 2017). A full description of CyCADA
is beyond the scope of discussion of this work; we direct
the reader to Hoffman et al. (2017) for further details.

In this experiment, we seek to assess the usefulness of Align-

Flow for domain adaptation in the CyCADA framework.
We evaluate the same pairs of source and target datasets as
in Hoffman et al. (2017): MNIST (LeCun et al. , 1998),
USPS (Hull, 1994), SVHN (Netzer et al. , 2011), which
are all image datasets of handwritten digits with 10 classes.
Instead of training a source-to-target and a target-to-source
generator with a cycle-consistency loss term, we train Align-
Flow with only the GAN-based loss in the target direction.
In Table 2, we see that CyCADA based models perform
better in two out of three adaptation settings when used in
conjunction with AlignFlow.

6. RELATED WORK
A key assumption in unsupervised domain alignment is the
existence of a deterministic or stochastic mapping GA→B
such that the distribution of B matches that of GA→B(A),
and vice versa. This assumption can be incorporated as a
marginal distribution-matching constraint into the objective
using an adversarially-trained GAN critic (Goodfellow et al.
, 2014). However, this objective is under-constrained. To
partially mitigate this issue, CycleGAN (Zhu et al. , 2017b),
DiscoGAN (Kim et al. , 2017), and DualGAN (Yi et al. ,
2017) added an approximate cycle-consistency constraint,



AlignFlow: Learning from multiple domains via normalizing flows

by encouraging GB→A ◦ GA→B and GA→B ◦ GB→A to be-
have like identity functions on domains A and B respectively.
While cycle-consistency is empirically very effective, alter-
natives based on variational autoencoders that do not require
either cycles or adversarial training have also been proposed
recently (Hoshen, 2018; Hoshen & Wolf, 2018).

In a parallel line of work, CoGAN (Liu & Tuzel, 2016) and
UNIT (Liu et al. , 2017) demonstrated the efficacy of adding
a shared-space constraint, where two decoders (decoding
into domains A and B respectively) share the same latent
space. These works have since been extended to enable
one-to-many mappings (Huang et al. , 2018b; Zhu et al.
, 2017a) as well as multi-domain alignment (Choi et al. ,
2018). Our work focuses on the one-to-one unsupervised
domain alignment setting. In contrast to previous mod-
els, AlignFlow leverages both a shared latent space and
exact cycle-consistency. To our knowledge, AlignFlow pro-
vides the first demonstration that invertible models can be
used successfully in lieu of the cycle-consistency objective.
Furthermore, AlignFlow allows the incorporation of exact
maximum likelihood training, which we demonstrated to
induce a meaningful shared latent space that is amenable to
interpolation.

To enforce exact cycle-consistency, we leverage the grow-
ing literature on invertible generative models. Dinh et al.
(2014) proposed a class of volume-preserving invertible
neural networks (NICE) that uses the change of variables
formulation to enable exact maximum likelihood training.
Real-NVP (Dinh et al. , 2017) and Flow++ (Ho et al. , 2019)
extend this line of work by allowing volume transformations
and additional architectural considerations. Glow (Kingma
& Dhariwal, 2018) further builds upon this by incorporat-
ing invertible 1× 1 convolutions. We note that additional
lines of work based on autoregressive flows (Kingma et al.
, 2016; Papamakarios et al. , 2017; Huang et al. , 2018a),
ordinary differential equations-based flows (Chen et al. ,
2018; Grathwohl et al. , 2018), and planar flows (Berg et al.
, 2018) have shown improvements in specific scenarios. For
fast inversion, our work makes use of the Real-NVP model,
and we leave extensions of this model in the unsupervised
domain alignment setting as future work.

7. CONCLUSION & FUTURE WORK
In this work, we presented AlignFlow, a learning framework
for cross-domain translations based on normalizing flow
models. The use of normalizing flow models is an attrac-
tive choice for several reasons we highlight: it guarantees
exact cycle-consistency via a single cross-domain mapping,
learns a shared latent space across two domains, and per-
mits a flexible training objective which is a hybrid of terms
corresponding to adversarial training and exact maximum
likelihood estimation. Theoretically, we derived conditions

under which the AlignFlow model learns marginals that are
consistent with the underlying data distributions. Finally,
our empirical evaluation demonstrated significant gains on
the tasks of image-to-image translation and unsupervised
domain adaptation, along with an increase in inference ca-
pabilities due to the use of invertible models, e.g., paired
interpolations in the latent space for two domains.

In the future, we would like to consider extensions of Align-
Flow to learning stochastic, multimodal mappings (Zhu
et al. , 2017a) and translations across more than two do-
mains (Choi et al. , 2018). In spite of strong empirical
results in domain alignments in the last few years, a well-
established theory explaining such results is lacking. With a
handle on model likelihoods and exact invertibility for infer-
ence, we are optimistic that AlignFlow can potentially aid
the development of such a theory and characterize structure
that leads to provably identifiable recovery of cross-domain
mappings. Exploring the latent space of AlignFlow from
a manifold learning perspective to domain alignment (Cui
et al. , 2014) is also an interesting direction for future re-
search.
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APPENDICES

A. PROOFS OF THEORETICAL RESULTS
A.1. PROOF OF THEOREM 1

Proof. Since the maximum likelihood estimate minimizes
the KL divergence between the data and model distribu-
tions, the optimal value for LMLE(GZ→A) is attained at a
marginally-consistent mapping, say G∗Z→A. Symmetrically,
there exists a marginally-consistent mapping G∗Z→B that
optimizes LMLE(GZ→B).

From Theorem 1 of Goodfellow et al. (2014), we know that
the cross-entropy GAN objective LGAN(CA, GB→A) is glob-
ally minimized when pA = p∗A and critic is Bayes optimal.
Further, from Lemma 1, we know that G∗B→A is marginally-
consistent w.r.t. (p∗A, p

∗
B). Hence, G∗B→A globally minimizes

LGAN(CA, GB→A). Symmetrically, G∗A→B = G∗
−1

B→A glob-
ally minimizes LGAN(CB, GA→B).

Since G∗B→A = G∗Z→A ◦ G∗
−1

Z→B globally optimizes all the
individual loss terms in the AlignFlow objective in Eq. 11,
it globally optimizes the overall objective for any value of
λA ≥ 0, λB ≥ 0.

A.2. PROOF OF THEOREM 2

Proof. First, we note that only the GAN loss terms depend
on CA and CB. Hence, the MLE terms are constants for
a fixed GB→A and hence, can be ignored for deriving the
optimal critics. Next, for any GAN trained with the cross-
entropy loss as specified in Eq 2, we know that the Bayes
optimal critic C∗A prediction for any a ∈ A is given as:

C∗A(a) =
p∗A(a)

p∗A(a) + pA(a)
(14)

See Proposition 1 in Goodfellow et al. (2014) for a proof.

We can relate the densities pA(a) and pB(b) via the change
of variables as:

pA(a) = pB(b)

∣∣∣∣det∂G−1A→B

∂A

∣∣∣∣
A=a

(15)

where b = GA→B(a).

Substituting the expression for density of pA(a) from Eq. 15
in Eq. 14, we get:

C∗A(a) =
p∗A(a)

p∗A(a) + pB(b)
∣∣∣det∂G−1

A→B
∂A

∣∣∣
A=a

(16)

where b = GA→B(a).

Symmetrically, using Proposition 1 in Goodfellow et al.
(2014) we have the Bayes optimal critic C∗B for any b ∈ B

given as:

C∗B(b) =
p∗B(b)

p∗B(b) + pB(b)
. (17)

Rearranging terms in Eq. 17, we have:

pB(b) = p∗B(b)

(
1

C∗B(b)
− 1

)
(18)

for any b ∈ B.

Substituting the expression for density of pB(b) from Eq. 18
in Eq. 16, we get:

C∗A(a) =
C∗B(b)p

∗
A(a)

p∗A(a) + p∗B(b)(1− C∗B(b))
∣∣∣det∂G−1

A→B
∂A

∣∣∣
A=a

(19)

where b = GA→B(a).

A.3. NON-IDENTIFIABILITY

As discussed, marginal consistency along with invertibility
can only reduce the underconstrained nature of the unpaired
cross-domain translation problem, but not completely elimi-
nate it. In the following result, we identify one such class
of non-identifiable model families for the MLE-only objec-
tive of AlignFlow (λA = ∞, λB = ∞). We will need the
following definitions.

Definition 2. Let Sn denotes the symmetric group on n
dimensional permutation matrices. A function class for the
cross-domain mappings G is closed under permutations iff
for all GB→A ∈ G, S ∈ Sn, we have GB→A ◦ S ∈ G.

Definition 3. A density pX is symmetric iff for all x ∈ X ⊆
Rn, S ∈ Sn, we have pX(x) = pX(Sx).

Examples of distributions with symmetric densities include
the isotropic Gaussian and Laplacian distributions.

Proposition 2. Consider the case where G∗B→A ∈ G, and
G is closed under permutations. For a symmetric prior pZ
(e.g., isotropic Gaussian), there exists an optimal solution
G†B→A ∈ G to the AlignFlow objective (Eq. 11) for λA =

λB =∞ such that G†B→A 6= G∗B→A.

Proof. We will prove the proposition via contradiction.
That is, let’s assume that G∗B→A is a unique solution for
the AlignFlow objective for λA = λB =∞ (Eq. 11). Now,
consider an alternate mapping G†B→A = G∗B→AS for an
arbitrary non-identity permutation matrix S 6= I in the
symmetric group.

As before, we note that G∗B→A = G∗Z→A ◦ G∗
−1

Z→B and
G†B→A = G†Z→A ◦G

†−1

Z→B due to the invertibility constraints
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in Eqs. 5-7. Since permutation matrices are invertible and
so is G∗B→A, their composition given by G†B→A is also in-
vertible. Further, since G is closed under permutation and
G∗B→A ∈ G, we also have G†B→A ∈ G.

Next, we note that the inverse of a permutation matrix is
also a permutation matrix. Since the prior is assumed to be
symmetric and a a transformation specified by a permutation
matrix is volume-preserving (i.e., det(S) = 1 for all S ∈
Sn), we can use the change-of-variables formula in Eq. 1 to
get:

LMLE(G
∗
Z→A) = LMLE(G

†
Z→A) (20)

LMLE(G
∗
Z→B) = LMLE(G

†
Z→B). (21)

Noting that G∗B→A = G∗Z→A ◦G∗
−1

Z→B and G†B→A = G†Z→A ◦
G†
−1

Z→B due to the invertibility constraints in Eqs. 5-7, we can
substitute the above equations in Eq. 11. When λA = λB =
∞, for any choice of CA, CB we have:

LAlignFlow(G
∗
B→A, CA, CB, λA =∞, λB =∞)

= LAlignFlow(G
†
B→A, CA, CB, λA =∞, λB =∞). (22)

The above equation implies that G†B→A is also an optimal
solution to the AlignFlow objective in Eq. 11 for λA =
λB =∞. Thus, we arrive at a contradiction since G∗B→A is
not the unique maximizer. Hence, proved.

The above construction suggests that MLE-only training
can fail to identify the optimal mapping corresponding to
the joint distribution p∗A,B even if it lies within the mappings
represented via the family represented via the AlignFlow
architecture. Failure modes due to non-identifiability could
also potentially arise for adversarial and hybrid training.
Empirically, we find that while MLE-only training gives
poor performance for cross-domain translations, the hybrid
and adversarial training objectives are much more effective,
which suggests that these objectives are less susceptible to
identifiability issues in recovering the true mapping.

B. EXPERIMENT DETAILS
B.1. IMAGE-TO-IMAGE TRANSLATION

Reconstructions are shown in Figure ??. We use the stan-
dard training, validation, and test splits for each dataset. For
datasets which do not provide a validation set (e.g., Facades
and CityScapes), we randomly hold out a portion of the
training set with the same number of images as the test set.
We train each model for 200 epochs with a fixed learning
rate of 2 · 10−4 for the first 100 epochs, followed by a linear
decay schedule for 100 epochs from the initial learning rate
to 0. We use the Adam (Kingma & Ba, 2014) optimizer
with β1 = 0.5 and β2 = 0.999, and for AlignFlow we

apply weight normalization (Salimans & Kingma, 2016)
of 5 · 10−5 to the generator’s parameters. When training
with an MLE objective, we apply gradient clipping with
a maximum gradient norm of 10. Scaling flow models to
higher dimensionality is an active area of research; for this
work we resized the images to 64× 64 for Cityscapes and
Maps, and 128× 128 for Facades. We use a batch size of 4
images per GPU and trained over 4 GPUs in parallel. For
CycleGAN results, all hyperparameters are adopted from
Zhu et al. (2017b).

For MLE/Hybrid models, we used an isotropic Gaussian
prior. We use the following flow architecture to parameterize
GZ→A and GZ→B:

Scale[Input: 32x32x3, Output: 16x16x6x2]
→ 3x CheckerboardCoupling[Channels: 32, Blocks: 4]
→ 3x ChannelwiseCoupling[Channels: 64, Blocks: 4]
→ Squeeze&Split[Input: 32x32x3, Output: 16x16x6x2]

Scale[Input: 16x16x6, Output: 8x8x12x2]
→ 3x CheckerboardCoupling[Channels: 64, Blocks: 4]
→ 3x ChannelwiseCoupling[Channels: 128, Blocks: 4]
→ Squeeze&Split[Input: 16x16x6, Output: 8x8x12x2]

Scale[Input: 8x8x12, Output: 4x4x24x2]
→ 3x CheckerboardCoupling[Channels: 128, Blocks: 4]
→ 3x ChannelwiseCoupling[Channels: 256, Blocks: 4]
→ Squeeze&Split[Input: 8x8x12, Output: 4x4x24x2]

Scale[Input: 4x4x24, Output: 4x4x24]
→ 4x CheckerboardCoupling[Channels: 256, Blocks: 4]

where CheckerboardCoupling and ChannelwiseCoupling
are affine coupling layers with checkerboard and channel-
wise masking, respectively, and where Squeeze&Split first
trades spatial extent for channels by turning each 4× 4× 1
subvolume into a 1× 1× 4 subvolume, and then splits the
volume along the last dimension and sends half of the fea-
tures directly to the latent space. See Dinh et al. (2017)
for more details. Within each affine coupling layer, we
parametrize the scale and translate factors using a ResNet
(He et al. , 2016) architecture with the specified number of
channels and residual blocks. We additionally use activa-
tion normalization (Kingma & Dhariwal, 2018) before each
coupling layer.


