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Abstract

We use deep neural networks to drive importance
sampling in Monte Carlo integration. Our work is
based on non-linear independent components esti-
mation (NICE), which we extend with piecewise-
polynomial coupling transforms that greatly in-
crease the modeling power of individual coupling
layers. To allow learning from Monte Carlo sam-
ples, we derive unbiased gradient estimates for the
KL and χ2 divergences that only require unnor-
malized stochastic estimates of the target distribu-
tion. We demonstrate the benefit of our proposed
coupling layers on generating natural images from
the CelebA dataset, and that of our whole pipeline
on light-transport simulation.

1. Introduction
Solving integrals is a fundamental problem of calculus that
appears in many disciplines of science and engineering. We
are interested in efficiently approximating otherwise difficult
to solve integrals with a Monte Carlo estimator 〈F 〉N

F =

∫
D
f(x) dx ≈

N∑
i=1

f(Xi)

q(Xi)
= 〈F 〉N . (1)

Here, q(x) is a probability density function (PDF) that gov-
erns the distribution of X1, . . . , XN . As long as q(x) is
positive for all x with non-zero f(x), the Monte Carlo
estimator is unbiased (i.e. E[〈F 〉N ] = F ) and converges
with variance V[〈F 〉N ] = 1/N V[〈F 〉]. The exact choice of
q(x) is important: it greatly influences V[〈F 〉] and thereby
the efficiency of 〈F 〉N . The ultimate goal is to choose
q(x) = p(x) = f(x)/F , in which case V[〈F 〉] is zero,
maximizing efficiency.

We focus on the general setting where little to no prior
knowledge about f is given, but f can be observed at a
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sufficiently high number of points. Many data-driven ap-
proaches have been proposed in the past to learn q(x) from
such observations. These approaches parameterize q(x; θ)
with parameters θ that are optimized to minimize some dis-
tance metric D(p ‖ q; θ). Existing parameterizations range
from dynamic collections of particles (Del Moral, 1996; Liu
& Chen, 1998) over parametric mixture models (Hey & Pur-
gathofer, 2002; Cappé et al., 2004; 2008; Vorba et al., 2014)
to non-parametric approaches (Jensen, 1995; Lafortune &
Willems, 1995; Müller et al., 2017; Dahm & Keller, 2018).

To this end, generative neural networks have seen relatively
little usage in the past because popular models such as
variational autoencoders (Kingma & Welling, 2014) and
generative adversarial networks (Goodfellow et al., 2014)
do not satisfy all key properties that are required in typical
Monte Carlo integration problems:

1. Evaluating the density q(x; θ) of samples (and often
also arbitrary data points) must be exact1.

2. Evaluating the density q(x; θ) and the generation of
samples Xi must be fast.

Neural-network-parameterized “normalizing flows” are of
interest, because they permit exact evaluation of the learned
PDF by modeling x as a differentiable deterministic bijec-
tive mapping of a latent variable z (with known distribution
q(z)): x = h−1(z; θ). The learned PDF is then

q(x; θ) = q(z)

∣∣∣∣det(∂h(x; θ)∂xT

) ∣∣∣∣ , (2)

where ∂h(x;θ)
∂xT is the Jacobian matrix of h(x; θ). To ensure

an expressive h that leads to a good approximation of p, it is
common to compose it from a sequence of simple bijective
transformations h = h1 ◦ · · · ◦ hL, each parameterized by a
neural network.

Our approach builds on the work of Dinh et al. (2014;
2016) which—unlike more general autoregressive ap-
proaches (Chen et al., 2016; Kingma et al., 2016; Papa-
makarios et al., 2017)—allows both fast sampling and den-
sity evaluation through the use of so-called “coupling layers”
to compose transforms.

1Stochastic estimates are not sufficient, even if unbiased, due
to q(x; θ) occurring in the denominator of Equation (1) .
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Figure 1. A coupling layer splits the input x into two partitions A
and B. One partition is left untouched, whereas dimensions in the
other partition are warped using a parametric coupling transform
C driven by the output of a neural network m. Multiple coupling
layers are composed to achieve expressive transforms.

Definition 1 (Coupling layer). Let x ∈ RD be an input
vector, A and B denote disjoint partitions of [[1, D]], and
m be a learnable function on R|A|, then the output of a
coupling layer y = (yA, yB) = h(x) is defined as

yA = xA , (3)

yB = C
(
xB ;m(xA)

)
, (4)

where the “coupling transform” C : R|B| ×m(R|A|) →
R|B| is a separable and invertible map.

Coupling layers are assembled by alternating the partitions
A and B (see Figure 1), which, together with their separa-
bility, ensures an upper-triangular Jacobian and thereby a
tractable Jacobian determinant: the product along the diago-
nal entries.

Dinh et al. (2016) propose to use affine coupling trans-
forms C(xB ; s, t) = xB � es + t with scaling s and
translation t being the output of a neural network m(xA).
We propose to increase the expressiveness by introducing
more sophisticated transforms (as did neural autoregressive
flows (Chen et al., 2018)). Concretely, in Section 2 we
introduce two piecewise-polynomial coupling transforms—
piecewise-linear and piecewise-quadratic—that greatly in-
crease the expressive power of individual coupling layers,
allowing us to employ fewer of those and thereby reduce
the total cost. We illustrate the benefits on a toy 2-D re-
gression problem and test the performance when learning a
(high-dimensional) distribution of natural images (CelebA).

In Section 3, we proceed to apply NICE to Monte Carlo inte-
gration and propose an optimization strategy for minimizing
estimation variance via the KL and χ2 divergences. We
demonstrate the proposed approach in path-traced Monte
Carlo light-transport simulation: we use NICE with our poly-
nomial warps to guide the construction of light paths and
demonstrate that it outperforms the state of the art at equal
sample counts, albeit with larger computational overhead.
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Figure 2. Predicted PDFs (left) and corresponding CDFs (right)
with K = 5 bins fitted to a target distribution (dashed).

2. Piecewise-Polynomial Coupling Layers
We introduce the usage of piecewise polynomials with de-
grees 1 and 2, i.e. piecewise-linear and piecewise-quadratic
warps. In contrast to Dinh et al. (2014; 2016), who assume
x, y ∈ (−∞,+∞)

D and Gaussian latent variables, our
transforms operate in the unit hypercube (i.e. x, y ∈ [0, 1]

D)
with uniformly distributed latent variables. Unbounded do-
mains can still be handled by warping the input of h1 and
the output of hL e.g. using the sigmoid and logit functions.

Similarly to Dinh and colleagues, we ensure computation-
ally tractable Jacobians via separability: we transform each
dimension i independently using a 1-D transform Ci. Op-
erating on unit intervals allows interpreting the warping
function Ci as a cumulative distribution function (CDF). To
produce eachCi, we instrument the neural network to output
the corresponding unnormalized probability density qi, and
construct Ci by integration; see Figure 2 for an illustration.

2.1. Piecewise-Linear Coupling Transform

We begin by investigating piecewise-linear coupling trans-
forms. Recall that we partition theD-dimensional input vec-
tor in two disjoint groups, A and B, such that x = (xA, xB).
We divide the unit dimensions in partition B into K bins
of equal width w = K−1. To define all |B| transforms at
once, we instrument the network m(xA) to predict a matrix
Q̂ ∈ R|B|×K . Each i-th row of Q̂ defines the unnormalized
probability mass function of the warp in dimension i of xB ;
we normalize the rows using the softmax function σ and
denote the normalized matrix Q; Qi = σ(Q̂i). The PDF in
i-th dimension is then defined as qi(xBi ) = Qib/w, where b
is the bin that contains the scalar value xBi .

In order to obtain a piecewise-linear coupling transform Ci,
which is used to warp dimension i, we integrate the PDF:

Ci(x
B
i ;Q) =

∫ xB
i

0

qi(t) dt = αQib +

b−1∑
k=1

Qik , (5)
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Figure 3. Our 32-bin piecewise-linear (4-th column) and 32-bin piecewise-quadratic (5-th column) coupling layers achieve superior
performance compared to affine coupling layers (Dinh et al., 2016) on some 2-D regression problems, despite using roughly 7 times fewer
model parameters than the result with 16 affine layers. The false-colored distributions were obtained by optimizing KL divergence with
uniformly drawn samples over the 2D image domain. The plots on the right show the training error (KL divergence) and the variance of
estimating the integral of the image using samples drawn from the learned densities; low values indicate effective importance sampling.

where α = KxBi − bKxBi c represents the relative position
of xBi in bin b.

Since C(xB ;Q) is separable by definition, its Jacobian ma-
trix is diagonal and the determinant is equal to the product of
the diagonal terms. These are equal to ∂Ci(x;Q)

∂x = qi(x
B
i ).

To reduce the number of bins K required for a good fit,
we would like the transform to have an adaptive resolution,
i.e. we want the network to also predict bin widths. Un-
fortunately, these cannot be easily optimized with gradient
descent in the piecewise-linear case; see Appendix A.

2.2. Piecewise-Quadratic Coupling Transform

In order to facilitate optimization of the bin widths, we
increase the order of the polynomials and utilize piecewise-
quadratic warps. We parameterize these analogously to
the piecewise-linear transforms instrumenting the neu-
ral network m(xA) to output softmax-normalized vertex
heights in matrix V ∈ R|B|×(K+1), and additional softmax-
normalized horizontal differences between neighboring ver-
tices (bin widths) in matrix W ∈ R|B|×K . A precise de-
scription of the transform can be found in Müller et al.
(2018).

2.3. Analysis

In Figure 3 we trained a RealNVP-based model using affine
transforms and our piecewise-polynomial transforms on toy
2-D distributions using uniformly sampled training data2.
We optimize DKL(p ‖ q; θ) using the stochastic gradient de-
scribed in Section 3.1. Every per-layer neural network has
the same architecture (except for the input and output lay-

2We also ran the same experiment with equally weighted i.i.d.
samples drawn proportional to the reference function—i.e. in a
density-estimation setting—producing near-identical results.

ers); see Müller et al. (2018) for details. The cost of evaluat-
ing the flow is proportional to the number of coupling layers.
As in prior works, the neural networks remain the computa-
tional bottleneck. The larger parameter sets required for our
piecewise-polynomial transforms increase the number of
trainable parameters by 20% compared to affine transforms.

When using L = 2 coupling layers, the piecewise-
polynomial transforms consistently perform better thanks to
their significantly larger modeling power, and outperform
even large numbers (e.g. L = 16) of affine coupling layers.

In Figure 4, we tested the piecewise-quadratic coupling
layers also on a high-dimensional density-estimation prob-
lem: learning the distribution of faces in the CelebFaces
Attributes dataset (Liu et al., 2015); we use the same data as
Dinh et al. (2016). Our architecture is based on the authors’
publicly available implementation and differs only in the
used coupling layer and the depth of the network—we use 4
recursive subdivisions while the authors use 5, resulting in
28 versus 35 coupling layers. We chose K = 4 bins. Since
our coupling layers operate on the [0, 1]

D domain, we do
not use batch normalization on the transformed data.

The visual quality of our results is comparable to that
obtained by (Dinh et al., 2016), although we perform
marginally better in terms of bits per dimension: we yield
2.85 and 2.89 on training and validation data, respectively,
whereas Dinh et al. (2016) reported 2.97 and 3.02. We tried
decreasing the number of coupling layers while increasing
the number of bins within each of them, but the results be-
came overall worse, leading to the hypothesis that—unlike
the 2-D case—learning the high-dimensional distribution of
natural images benefits more from having many coupling
layers rather than having fewer but more expressive ones.
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Examples from the training set Generated novel images Manifold spanned by four images

Figure 4. Generative modeling of facial photographs using the architecture of Dinh et al. (2016) with our piecewise-quadratic coupling
transform. We show training examples (left), faces generated by our trained model (middle), and a manifold of faces spanned by linear
interpolation of 4 training examples in latent space (right; training examples are in the corners).

3. Application to Monte Carlo Integration
In this section, we apply the NICE framework to Monte
Carlo integration. Our goal is to reduce estimation variance
by learning sampling PDFs q(x; θ) that are as close as pos-
sible to p(x)= f(x)/F from unbiased noisy observations
of the integrand 〈f(x)〉 (i.e. E[〈f(x)〉]=f(x)). We follow
the standard approach of quantifying the distance using one
of the commonly used divergence metrics and optimizing θ
with a stochastic-gradient-descent based technique; we use
Adam (Kingma & Ba, 2014). While all divergence metrics
reach their minimum if both distributions are equal, they
differ in shape and therefore produce different q in practice.

3.1. Minimizing Kullback-Leibler Divergence

It is well known that the gradient of the KL divergence is
the expected negative log-likelihood gradient

∇θDKL(p ‖ q; θ) = E
X∼p

[−∇θ log q(X; θ)] . (6)

In our setting, however, we are unable to sample from p
(we are trying to learn to do so, after all), so we write the
expectation in terms of X ∼ q

∇θDKL(p ‖ q; θ) = E
X∼q

[
− p(X)

q(X; θ)
∇θ log q(X; θ)

]
. (7)

In most integration problems, p(x) is only accessible in an
unnormalized form through f(x): p(x) = f(x)/F . Since
F is unknown—this is what we are trying to estimate in
the first place—the gradient can be estimated only up to the
global scale factor F . This is not an issue since common
optimizers (e.g. Adam) compensate for this factor. Further-
more, substituting f(x) with 〈f(x)〉 as required above does
not affect the expectation due to linearity. Equation (7)
therefore shows that minimizing the KL divergence via gra-
dient descent is equivalent to minimizing the negative log
likelihood weighted by MC estimates of F .

3.2. Minimizing Variance via χ2 Divergence

The arguably most attractive quantity to minimize in the
context of (unbiased) Monte Carlo integration is the vari-
ance of the estimator. Inspired by previous works that
strive to directly minimize variance (Herholz et al., 2016;
2018; Pantaleoni & Heitz, 2017; Vévoda et al., 2018), we
demonstrate how this can be achieved for the MC estimator
〈f(x)〉/q(X; θ), with X ∼ q, via gradient descent. We
begin with the variance gradient and simplify:

∇θ V
X∼q

[
〈f(X)〉
q(X; θ)

]
= ∇θ

∫
Ω

〈f(x)〉2

q(x; θ)
dx

=

∫
Ω

〈f(x)〉2∇θ
1

q(x; θ)
dx

= E
X∼q

[
−
(
〈f(X)〉
q(X; θ)

)2

∇θ log q(X; θ)

]
.

(8)

Relation to the Pearson χ2 divergence Upon close in-
spection it turns out that if f(x) is known exactly, then the
variance objective gradient (Equation 8) is proportional to
the Pearson χ2 divergence gradient∇θDχ2(p ‖ q; θ):

∇θDχ2(p ‖ q; θ) = ∇θ
∫

Ω

(p(x)− q(x; θ))2

q(x; θ)
dx

= ∇θ
∫

Ω

p(x)
2

q(x; θ)
dx

=
1

F 2
∇θ V

X∼q

[
f(X)

q(X; θ)

]
. (9)

As such, minimizing the variance of a Monte Carlo estimator
often amounts to minimizing the Pearson χ2 divergence
between the ground-truth and the learned distributions.
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Connection to the KL divergences Notably, the stochas-
tic variance gradient and that of the KL divergence differ
only in the weight applied to the log likelihood. In∇θDKL
the log likelihood is weighted by the Monte Carlo weight,
whereas when optimizing variance, the log likelihood is
weighted by the squared Monte Carlo weight. The variance
thus penalizes large discrepancies stronger, specifically, low
values of q in regions of large density p. As such, it tends to
produce more conservative q than DKL.

3.3. Application to Light-Transport Simulation

In Figure 5, we apply NICE with our piecewise-polynomial
coupling layers to Monte Carlo simulation of light transport,
which estimates the amount of light arriving at a sensor by
constructing millions of random walks that mimic photon
trajectories. The variance of the estimation depends on how
well the distribution of random walks—referred to as light
paths—matches the light transport. We learn PDFs for con-
structing the light paths online, i.e. during rendering: we
start with randomly initialized networks and gradually opti-
mize their weights using the aforementioned loss gradients
computed for a stream of light-path samples. The learned
PDFs are used to construct new samples of higher quality,
leading to estimates with less variance and thereby images
with less noise.

We compare rendered images at equal sample count (an
equal number of light paths traced to compute each image)
against a baseline path tracer (PT-Unidir) and prior path-
guiding approaches based on SD-trees (PPG) by Müller
et al. (2017) and Gaussian mixture models (GMM) by Vorba
et al. (2014). Our algorithm achieves the lowest error when
optimized with the KL divergence; quantified using the
“mean absolute percentage error” (MAPE). For additional
results, visualizations, and implementation details please
see an extended version of this report (Müller et al., 2018).

4. Conclusion
We extended NICE using piecewise-polynomial transforms
that increase the modeling power of individual coupling lay-
ers. We also discussed two schemes for optimizing trainable
parameters within the context of Monte Carlo integration,
in particular we pointed out that Dχ2 is closely related to in-
tegration variance. Finally, we demonstrated that instances
of normalizing flows, such as the ones discussed, can yield
state-of-the-art results in realistic image synthesis where
images are obtained by means of sampling transport paths.
We believe that other particle-transport problems can also
benefit from these approaches.
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A. Adaptive Bin Sizes in Piecewise-Linear
Coupling Transforms

Without loss of generality, we investigate the simplified sce-
nario of a one-dimensional input A = ∅ and B = {1}, a sin-
gle coupling layer L = 1 and the KL-divergence loss func-
tion. Further, let the coupling layer admit a piecewise-linear
coupling transform—i.e. it predicts a piecewise-constant
PDF—with K = 2 bins. Let the width W of the 2 bins be
controlled by traininable parameter θ ∈ R such thatW1 = θ
and W2 = 1− θ and S = Q1θ +Q2(1− θ), then

q(x; θ) =

{
Q1/S if x < θ

Q2/S otherwise.
(10)

Using Eq. 7, the gradient of the KL divergence w.r.t. θ is

∇θDKL(p ‖ q; θ) = ∇θ
∫ 1

0

{
p(x) log(Q1/S) if x < θ

p(x) log(Q2/S) otherwise
dx ,

(11)

where—in contrast to our piecewise-quadratic transform—
the gradient can not be moved into the integral due to the
discontinuity of q at θ. This prevents us from expressing the
stochastic gradient of Monte Carlo samples with respect to
θ in closed form and therefore optimizing with it.

We also investigate ignoring this limitation and performing
the simplification of Equation (7) regardlessly, resulting in

∇θDKL(p ‖ q; θ) ≈ E

p(X)
(
1− Q2

Q1

)
if X < θ

p(X)
(
Q1

Q2
− 1
)

otherwise

 ,
(12)
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which has the same sign regardless of the value of θ, result-
ing in divergent behavior.

A similarly undesirable behavior emerges when normalizing
q in a slightly different way by interpreting Q as probability
masses rather than unnormalized densities:

q(x; θ) =

{
Q1/θ if x < θ

Q2/(1− θ) otherwise.
(13)

The KL divergence gradient is then

∇θDKL(p ‖ q; θ) ≈
∫ 1

0

{
p(x)/θ if x < θ

p(x)/(θ − 1) otherwise,
dx

=
1

θ

∫ θ

0

p(x) dx− 1

1− θ

∫ 1

θ

p(x) dx .

(14)

To illustrate the flawed nature of this gradient, consider the
simple scenario of p(x) = 1, in which the RHS always
equals to zero, suggesting any θ being a local minimum.
However, θ clearly influences DKL(p ‖ q; θ) in this example,
and therefore can not be optimal everywhere. Empirical
investigations with other shapes of p, e.g. the examples
from Figure 3, also suffer from a broken optimization and
do not converge to a meaningful result.

While we only discuss a simplified setting here, the simplifi-
cation in Equation (7) is also invalid in the general case of
piecewise-linear coupling functions, likewise leading to a
broken optimization.


