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Abstract
Domain Translation consists in transforming ele-
ments from one domain to another, in such a way
that their semantics are conserved across domains.
This task is very general, and has abundant appli-
cations across diverse fields such as style trans-
fer, machine translation, transfer learning, inverse
problems, music synthesis, etc.. However, the
lack of paired data from each domain has led the
community to consider solving the previous prob-
lem with unpaired data only. Despite impressive
successes for the unpaired problem, there remains
little theoretical understanding. After showing
that the common approach for the unpaired prob-
lem is ill-posed, we reformulate the problem as a
transport problem between two probability distri-
butions, explicitly enforcing semantics to be con-
served across domains, which makes it equivalent
to the problem of optimal transport, thus yielding
both existence and unicity of the transformation.
We then consider a dynamical formulation for the
transportation problem which allows us to build
our model as an ODE flow of minimal energy.
Finally, we evaluate our method on toy examples
as well as classical datasets.

Given an input and output domain, domain translation con-
sists in learning a mapping between the elements of the two
domains, so as to retrieve semantically meaningful pairings
between the two domains. For example, if the domains
were natural photographs and art paintings, such a pairing
could refer to couples of natural photographs and paintings
that describe the same underlying scene. A wide range
of problems could be formulated as translation, including
image-to-image (Isola et al., 2016) or video-to-video (Wang
et al., 2018) translation, image captioning (Zhang et al.,
2016), natural language translation (Bahdanau et al., 2015),
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music synthesis (Mor et al., 2018), and many more. The
problem has been initially tackled in the supervised (or
paired) setting, where we have access to data with labelled
pairings. Considering the unsupervised (or unpaired) set-
ting, where no paired data is available, allows to tackle an
even wider range of problems, and has recently motivated
several works from the community with applications in pose
estimation (Kanazawa et al., 2018), speech-to-text (Chung
et al., 2018), data augmentation (Lee et al., 2018) or text
style transfer (Subramanian et al., 2018). One of the seminal
work in this direction has been the CycleGAN model pro-
posed by (Zhu et al., 2017) for image-to-image translation.

If one is to calculate a correspondance between two domains,
inversibility is an important feature of any candidate solution.
However, the problem is still an ill-posed one, with many
possible solutions as there are many inversible mappings,
possibly an infinity, which can associate two distributions.
This means that an additional criterion has to be taken into
account, one which would ideally select a unique solution
for UDT.

Our first contribution is to reformulate UDT as an optimal
transport problem (OT). This will guarantee the existence
and unicity of a solution. In order to derive an efficient
algorithm, we then use a dynamical formulation of OT in
order to introduce an algorithm for solving the transport
problem. This new formulation leads to learning trajectories
with minimal length (geodesics) in the measure space where
the source and target distributions lie. We parameterize these
trajectories as ODE flows controlled by a constant velocity
fields which naturally yields the desired transformation and
its inverse. Finally, we evaluate our method over different
datasets and compare it to previous baselines. Our main
contributions are then following:

• We cast the unsupervised domain translation problem
in an Optimal Transport setting thus providing a new
way to attack UDT.

• We make use of a dynamical formulation of OT in order
to frame the learning problem to build a continuous
model and describe the corresponding algorithm.

• We empirically investigate the performance of our
model as well as its different properties and features as
compared to other models.
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1. Unpaired Domain Translation as Optimal
Transport

1.1. Definition and properties

We start by stating our problem:

Definition 1.1. Unsupervised Domain Translation (UDT)
Given two domains represented by probability distributions
� and �, the problem of domain translation consists in find-
ing couplings between � and �, i.e. mappings T : A → B
and S : B → A, in such a way that these couplings are se-
mantically meaningful.

A common approach for UDT is based on (Zhu et al., 2017).
Therefore, many approaches (Lample et al., 2018; Yuan
et al., 2018; Chung et al., 2018; Choi et al., 2018) attempt to
enforce a coherence constraint, acting upon the the output
distributions induced by the mappings T and S, and an
inversibility constraint, applied on the transformed elements
itself:

– Coherence1: T]� = �, and S]� = �.

– Inversibility2: S◦T ��a:s:
= id, and T ◦S ��a:s:

=
id,

For instance, the CycleGan model (Zhu et al., 2017)
minimizes a weighted combination of a coherence loss
D(T]�; �) +D(S]�; �), where D corresponds to an adver-
sarial loss, and a cycle-consistent loss ‖S ◦ T − id‖L1(�) +
‖T ◦ S − id|L1(�), using the norm of L1.

However, it is important to stress the fact that those two
constraints are not sufficient to ensure a unique solution to
UDT. This can be easily seen in the discrete case, when the
two distributions are simply sums of Dirac distributions: any
arbitrary pairing between both domains satisfies both the
inversibility and coherence constraints. This can be easily
extended to the continuous setting when the two distribu-
tions are absolutely continuous and admit a density: We can
prove that there exists infinitely many mappings satisfying
both constraints.

1.2. Optimal Transport

In the following, we consider that we have access to a fi-
nite number of samples of both distributions distributions
�, � which are assumed to be absolutely continuous w.r.t.
Lebesgue measure.

Let us consider an abstract cost function c(x; y), low when
x and y have the same semantics, and high otherwise. For

1The push-forward f]ρ is defined as f]ρ(B) = ρ(f�1(B)),
for any measurable set B.

2Notation f
µ�a.s.

= g expresses that
R
B
f dµ =

R
B
g dµ, for

any measurable set B.

example, in the case where x, y are semantic representations
of domain elements, c could correspond to the euclidean
distance between x and y: c(x; y) = ‖x−y|22. The mapping
of x through f : Rd → Rd then incurs a cost c(x; f(x)).
Hence, a semantic preserving mapping is a mapping with a
low cost over the elements on the support of distribution �,
i.e. a low value for the integral

R
Rd c(x; f(x)) d�(x).

Out of all mappings that satisfy the invertibility and coher-
ence conditions, we are now looking for mappings T and S
that are of minimal cost:

minimize
T; S

Z
Rd

c(x; T (x)) d�(x) +

Z
Rd

c(y; S(y)) d�(y)

subject to T]� = �; S]� = �;

S ◦ T ��a:s:
= id; T ◦ S ��a:s:

= id
(1)

Consider now the classical Monge formulation of
OT (MP):

minimize
T

C(T ) =

Z
Rd

c(x; T (x)) d�(x)

subject to T]� = �

(2)

This is the modern formulation of the original OT problem
initially stated by Gaspard Monge, and is the founding stone
of the celebrated Monge-Kantorovitch theory. The follow-
ing important result not only states that solving equation 1
actually boils down to solving equation 2, but it also pro-
vides us with existence and unicity of the optimal mappings
T and S:
Theorem 1. Let �, � absolute continuous measures. If
c(x; y) = h(x − y) where h is strictly convex, then there
exists a unique couple (T; S) of transformations such that:

• T]� = �, and S]� = �,

• C(T ) is minimal, and S is the minimal transport from
� to �.

• T ◦ S ��a:s:
= id, and S ◦ T ��a:s:

= id,

Its proof can be found in (Santambrogio, 2015), among
other classical OT references.

This result has several implications:

– All the constraints in equation 1 are naturally verified
by the optimal maps T and S, without having to en-
force them explicitly,

– existence and uniqueness of the optimal maps may
actually shed light on the recent success of unpaired
domain translation approaches.,



Optimal Domain Translation

– solving on both T and S is not necessary, as solving
only on T yields the same result,

– we can consider equation 2 instead of equation 1.

However, this theorem is not constructive in the sense that it
does not give us any clue about how we could retrieve such
optimal solutions. In the following, we use a dynamical
framing for the problem which yields naturally a model for
solving it.

2. Neural dynamical formulation of Optimal
Transport

2.1. Dynamic Formulation for Optimal Transport

Instead of directly pushing � to �, it is possible to view �
and � as points in a space of measures, and consider trajec-
tories from � to �. Thus, a way to transport the probability
mass from � to � is a curve between two points on this
space. The curve corresponding to the optimal mapping is
then the shortest one, in other words it is the geodesic curve
between the two points.

More formally, let us introduce the Wasserstein metric space
Wp(Rd), i.e. the space of measures ofRd with finite p-th
moment endowed with the Wassertein distance:

Wp(�; �) = min
T]�=�

C(T )
1
p

when costs of the form c(x; y) = ‖x− y‖p are considered,
for some integer p ≥ 2. As Wp(Rd) is a space of measures,
� and � are seen as points of this space of measures, and
thus, any continuous path linking both distributions defines
a gradual transformation from � to �.

The following result (from Theorem 5.27 of (Santambrogio,
2015)) motivates the dynamic formulation of OT:
Proposition 1. Wp is a geodesic space, meaning that, for
any measures �; � ∈ Wp there exists a geodesic curve
(�t)t2[0;1] between � and �.

The following theorem, for which a proof can be found in
(Santambrogio, 2015), the famed Benamou-Brenier formula
makes the analogy between the motion of fluid mass from
one configuration to another to the transport of probability
masses, linking the geodesic curves to a minimal energy flow
of a differential equation, gradually displacing probability
mass from one domain to another.
Theorem 2. Given � and � admitting densities w.r.t. the
Lebesgue measure and (�t)t2[0;1] the geodesic curve with
�0 = � and �1 = �, we can associate a vector field vt ∈
Lp(�t) which solves the continuity equation3:

@t�t +∇ · (�tvt) = 0

3∂t is the partial derivative operator w.r.t. variable t, and r�
the divergence operator w.r.t. space.

with:

W p
p (�; �) =

Z 1

0

‖vt‖pLp(�t)dt

In other words, the geodesic curve (�t)t2[0;1] between both
distributions, together with the minimal energy velocity
vector field v solve the continuity equation. Moreover, its
energy along this path is precisely equal to the Wasserstein
distance W p

p (�; �). If this vector field of minimal energy
v could be obtained, probability mass could be displaced
according to the flow defined by the continuity equation,
and the geodesic curve could be retrieved. Thus, we can
reformulate the problem as a problem of optimal control,
where v is the control variable:

minimize
v

Cdyn(v) =

Z 1

0

‖vt‖pLp(�t)dt

subject to @t�t +∇ · (�tvt) = 0; �0 = �; �1 = �

(3)

2.2. Solving the control problem

Having only access to samples from � and �, rather than
using the continuity equation, we take the Lagrangian point
of view which gives the equivalent equation:�

@t�
x
t = vt(�

x
t )

�x0 = x
(4)

Moreover, as we intend to learn the control variable v, we
parameterize it as v� which finally yields:

minimize
�

Cdyn(v�) =

Z 1

0

‖v�t ‖
p
Lp((�·

t)]�) dt

subject to @t�
x
t = v�t (�xt );

�·0 = id;
(�·1)]� = �

(5)

The constrained optimization problem in equation 5 is a
continuous-time optimal control problem, similar to prob-
lems from fluid mechanics. This problem can be approached
using gradient based optimization techniques. For instance,
in our implementation using neural networks, we can either
use back-propagation if a differentiable solver is taken to
solve the forward equation or the adjoint method as detailed
in (Chen et al., 2018).

Moreover, in practice, in order to enforce the constraint over
the target, we use a discriminator.

3. Experiments
We evaluate the effectiveness of our methodology on:

• A simulated dataset of two gaussian distributions with
different means and variances. In this dataset, we have
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Algorithm 1 Finding the Optimal Mapping

Input: Dataset of unpaired samples xA, xB, sampled

from �, �

Guess initial parameters �

while not converged do
Randomly sample a mini-batch of xA, xB
Solve @t�tx = v�(�

t
x); �x0 = xA; t∈ [0; 1], for all xA

Compute loss C on mini-batch

Propagate gradient and compute estimate of dC
d�

Update � in the steepest descent direction

end while
Output: Learned parameters �.

sampled points from a normal distribution, and applied
different linear transformations in order to obtain sam-
ples for each domain. As is shown in Table 1, we
evaluate our capacity to retrieve the samples using our
learned mappings.

• The classical CelebA dataset with the male and female
distributions, for a high-dimensional example.

Table 1. Quantitative results for the different tested methods, on
the two Gaussian distribution dataset. The first metric represents
the transportation cost of the mapping. The second expresses how
well the pairings between both domains are retrieved. Note that
due to the fact that the coherence constraint is not necessarily
verified, OT does not yield the smallest transportation cost.

METRIC 1
N

P
xA

kφxA1 � xAk2
2

1
N

P
(xA,xB)

kφxA1 � xBk2
2

MLP 3.59 1.08
RESNET 4.03 0.005
FLOW 4.24 0.001
OT 4.12 0

3.1. Experiments details

For the first experiment, we parametrize v as a fully con-
nected neural network with 2 hidden layers, ReLu (0:2)
non-linearities and batch normalization. The discriminator
is also a fully connected network with 3 hidden layers, ReLu
non-linearities and spectral normalization. The dataset in-
cludes 1000 samples from each distribution.

For the second experiment, we choose a Convolutional
Residual Network as a model for v, with 5 residual blocks
and for the discriminator, the one from SAGAN (Zhang
et al., 2018).

For both experiments, we used as solver explicit Euler steps

Figure 1. Gaussian distributions experiments: With our method,
from left to right, we have t = 0, 0.2, 0.4, 0.6, 0.8, 1. Up we have
the mapping from α to β, down the inverse.

Figure 2. Gaussian distributions experiments: With a residual net-
work, from left to right, we have t = 0, 0.2, 0.4, 0.6, 0.8, 1. Up
we have the mapping from α to β, down the inverse.

with �t = 1
5 . As this is a differentiable solver, we used

back-propagation to calculate the gradient.

3.2. Results

Figure 1 shows that our method successfully learns a trans-
port which is nearly optimal as well as its inverse. Let us
stress the fact that, during train, we only had a loss over the
mapping from � to � and nothing for the inverse, which
is simply obtained by calculating the inverse flow. Fig-
ure 2 shows that a simple residual network, while giving
a reasonable forward mapping, although the intermediate
interpolations are less good, doesn’t yield the right inverse.

Figures 3 and 4 show that our method can also be success-
fully applied to more complex high-dimensional datasets.
Again, we successfully learn a convincing transformation
as well as its inverse, as shown in figure 3, while figure
4 shows one of the advantages of our continuous method
which yields smooth interpolations between the two distri-
butions, as well as extrapolations.

4. Conclusion
In this short paper, we build an Optimal Transport frame-
work for the ill-posed Unpaired Domain Translation prob-
lem. Using its dynamical formulation, we then build a model

Figure 3. CelebA experiment: Male to Female and back. From
top to bottom, for male and female: input, reconstruction, after
transport.
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