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Abstract
We propose to improve trust region policy search
with normalizing flows policy. From the Con-
trol as Inference perspective, we motivate using
expressive policy classes to improve policy opti-
mization procedure. We illustrate that when the
trust region is constructed by KL divergence con-
straints, normalizing flows policy generates sam-
ples far from the ’center’ of the previous policy
iterate, which potentially enables better explo-
ration. Through extensive comparisons, we show
that the normalizing flows policy significantly im-
proves upon baseline architectures especially on
high-dimensional tasks with complex dynamics.

1. Introduction
In on-policy optimization, vanilla policy gradient algorithms
suffer from occasional updates with large step size, which
lead to collecting bad samples that the policy cannot re-
cover from (Schulman et al., 2015). Motivated to overcome
such instability, Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015) constraints the KL divergence be-
tween consecutive policies to achieve much more stable
updates. However, with factorized Gaussian policy, such
KL divergence constraint can put a very stringent restriction
on the new policy iterate, making it hard to bypass locally
optimal solutions and slowing down the learning process.

Can we improve the learning process of trust region policy
search by using a more expressive policy class? Intuitively,
a more expressive policy class has more capacity to repre-
sent complex distributions and as a result, the KL constraint
may not impose a very strict restriction on the sample space.
Though prior works (Haarnoja et al., 2017; 2018b;a) have
proposed to use expressive generative models as policies,
their focus is on off-policy learning. In this work, we show
how expressive distributions, in particular normalizing flows
(Rezende & Mohamed, 2015; Dinh et al., 2016) can be com-
bined with on-policy learning and boost the performance of
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trust region policy optimization.

The structure of our paper is as follows. In Section 1 and 2,
we provide backgrounds on policy optimization and normal-
izing flows. In Section 3, we introduce normalizing flows
for control and provide a motivation & justification for ex-
pressive policies for control from the Control as Inference
perspective. In Section 4, we show by comprehensive ex-
periments that normalizing flows significantly outperforms
baseline policy classes when combined with trust region pol-
icy search algorithms such as TRPO and ACKTR. We dis-
cuss related work in Section 5. Find our code at https://
github.com/robintyh1/onpolicybaselines.

2. Background
In the standard formulation of Markov Decision Process
(MDP), at time step t ≥ 0, an agent is in state st ∈
S, takes an action at ∈ A, receives an instant reward
rt = r(st, at) ∈ R and transitions to a next state st+1 ∼
p(·|st, at) ∈ S. Let π : S 7→ P (A) be a policy, where
P (A) is the set of distributions over the action space A.
The discounted cumulative reward under policy π is J(π) =
Eπ
[∑∞

t=0 γ
trt
]
, where γ ∈ [0, 1) is a discount factor. The

objective of RL is to search for a policy π that achieves the
maximum cumulative reward π∗ = arg maxπ J(π). For
convenience, under policy π we define action value function
Qπ(s, a) = Eπ

[
J(π)|s0 = s, a0 = a

]
and value function

V π(s) = Eπ
[
J(π)|s0 = s, a0 ∼ π(·|s0)

]
. We also define

the advantage function Aπ(s, a) = Qπ(s, a)− V π(s).

2.1. Policy Optimization

One way to approximately find π∗ is through direct policy
search within a given policy class πθ, θ ∈ Θ where Θ is
the parameter space for the policy parameter. We can up-
date the paramter θ with policy gradient ascent, by comput-
ing ∇θJ(πθ) = Eπθ

[∑∞
t=0A

πθ (st, at)∇θ log πθ(at|st)
]
,

then updating θnew ← θ + α∇θJ(πθ) with some learning
rate α > 0. Alternatively, the update can be formulated by
first considering a trust region optimization problem

max
θnew

Eπθ
[πθnew(at|st)
πθ(at|st)

Aπθ (st, at)
]
,

||θnew − θ||2 ≤ ε, (1)
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for some ε > 0. If we do a linear approximation
of the objective in (1), Eπθ

[πθnew (at|st)
πθ(at|st) A

πθ (st, at)
]
≈

∇θJ(πθ)
T (θnew − θ), we recover the policy gradient up-

date by properly choosing ε given α.

2.2. Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) (Schulman et al.,
2015) applies information theoretic constraints instead of
Euclidean constraints (as in (1)) between θnew and θ to bet-
ter capture the geometry on the parameter space induced
by the underlying distributions. In particular, consider the
following trust region formulation

max
θnew

Eπθ
[πθnew(at|st)
πθ(at|st)

Aπθ (st, at)
]
,

Es
[
KL[πθ(·|s)||πθnew(·|s)]

]
≤ ε, (2)

where Es
[
·
]

is w.r.t. the state visitation distribution induced
by πθ. The trust region enforced by the KL divergence
entails that the update according to (2) optimizes a lower
bound of J(πθ), so as to avoid accidentally taking large
steps that irreversibly degrade the policy performance during
training as with vanilla policy gradient (1) (Schulman et al.,
2015). ACKTR Wu et al. propose to replace the CG descent
of TRPO by Kronecker-factored approximation (Martens
& Grosse, 2015) when computing matrix inversion. This
approximation is more stable than CG descent and yields
performance gain over conventional TRPO.

2.3. Normalizing flows

Normalizing flows (Rezende & Mohamed, 2015; Dinh et al.,
2016) have been applied in variational inference and prob-
abilistic modeling to represent complex distributions. In
general, consider transforming a source noise ε ∼ ρ0(·) by
a series of invertible nonlinear functions gθi(·), 1 ≤ i ≤ K
each with parameter θi, to output a target sample x,

x = gθK ◦ gθK−1
◦ ... ◦ gθ2 ◦ gθ1(ε). (3)

Let Σi be the inverse of the Jacobian matrix of gθ(·), then
the log density of x is computed by the change of variables
formula,

log p(x) = log p(ε) +

K∑
i=1

log det(Σi). (4)

The distribution of x is determined by the noise ε and the
transformations gθi(·). When the transformations gθi(·) are
very complex (e.g. gθi(·) are neural networks) we expect
p(x) to be highly expressive as well. However, for a general
invertible transformation gθi(·), computing the determinant
det(Σi) is expensive. In this work, we follow the architec-
ture of (Dinh et al., 2014) to ensure that det(Σi) is computed

cheaply while gθi(·) are expressive. We leave all details to
Appendix B. We will henceforth also address the normaliz-
ing flows policy as the NF policy.

3. Normalizing flows Policy for On-Policy
Optimization

3.1. Normalizing flows for control

We now construct a stochastic policy based on normalizing
flows. By design, we require the source noise ε to have the
same dimension as the action a. Recall that the normalizing
flows distribution is implicitly defined by a sequence of
invertible transformation (3). To define a proper policy
π(a|s), we first embed state s by another neural network
Lθs(·) with parameter θs and output a state vector Lθs(s)
with the same dimension as ε. We can then insert the state
vector between any two layers of (3) to make the distribution
conditional on state s. In our implementation, we insert the
state vector after the first transformation (for clarity of the
presentation, we leave all details of the architectures of gθi
and Lθs in Appendix B).

a = gθK ◦ gθK−1
◦ ... ◦ gθ2 ◦ (Lθs(s) + gθ1(ε)). (5)

Though the additive form of Lθs(s) and gθ1(ε) may in the-
ory limit the capacity of the model, in experiments below
we show that the resulting policy is still very expressive.
For simplicity, we denote the above transformation (5) as
a = fθ(s, ε) with parameter θ = {θs, θi, 1 ≤ i ≤ K}. It
is obvious that the transformation a = fθ(s, ε) is still in-
vertible between a and ε, which is critical for computing
log πθ(a|s) according to the change of variables formula
(4). This architecture builds complex action distributions
with explicit probability density πθ(·|s), and hence entails
training using score function gradient estimators.

Practical Considerations. In implementations, it is nec-
essary to compute gradients of the entropy ∇θH

[
πθ(·|s)

]
,

either for computing Hessian vector product for CG (Schul-
man et al., 2015) or for entropy regularization (Schulman
et al., 2015; 2017a; Mnih et al., 2016). Unlike Gaus-
sian, for normalizing flows there is no analytic form for
entropy, instead we can use N samples to estimate en-
tropy by re-parameterization, H

[
πθ(·|s)

]
= Ea∼πθ(·|s)

[
−

log πθ(a|s)
]

= Eε∼ρ0(·)
[
− log πθ(fθ(s, ε)|s)

]
≈

1
N

∑N
i=1− log πθ(fθ(s, εi)|s). The gradient of the en-

tropy can be easily estimated with samples and im-
plemented using back-propagation ∇θH

[
πθ(·|s)

]
≈

1
N

∑N
i=1−∇θ log πθ(fθ(s, εi)|s)

]
.

3.2. Motivating Expressive Policies for Control

We motivate the expressive policies for control from the
framework of Control as Variational Inference (Levine,
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2018). Here we briefly introduce the framework. Con-
sider a MDP with horizon T and let τ = {st, at}T−1

t=0 de-
note a trajectory consisting of T state-action pairs. Let
rt = r(st, at) be the instant reward and define an opti-
mality variable Ot that follows a Bernoulli distribution
p(Ot = 1|st, at) = exp( rtc ) for some c > 0 1. Given a
prior distribution over trajectories p(τ), the inference objec-
tive is to compute p(τ |O0:T−1 = 1).

Now consider a variational distribution q(τ) =
ΠT−1
t=0 p(st+1|st, at)πθ(at|st) implicitly induced by

the policy πθ(at|st). Also assume that the prior p(τ) is a
uniform distribution. The variational inference objective
reduces to minimizing the KL-divergence (equivalently
below we maximize the negative of the KL-divergence)

max
θ
−KL[q(τ)||p(τ |O0:T−1 = 1)]

∝ max
θ

Eq(τ)[

T−1∑
t=0

rt + cH(πθ(·|st)] (6)

where the ∝ results from scaling the RHS of (6) by a factor
of c. In general, the RHS of (6) is the maximum entropy
RL objective (Haarnoja et al., 2017; 2018b; Levine, 2018),
which also reduces to the conventional RL objective J(πθ)
defined in Section 2 when c→ 0 2.

In variational inference, improving the expressiveness of a
variational distribution can improve its approximation to the
usually intractable target distribution (Rezende & Mohamed,
2015). Similarly in (6), a more flexible variational distribu-
tion q(τ) should approximate q(τ |O0:T−1 = 1) better by
finding a lower minimum of the KL-divergence, which in
turn translates to a higher RL objective J(πθ) in the RHS
of (6). Since q(τ) is induced by πθ(at|st), we could only
improve the expressiveness of q(τ) by making πθ(at|st)
more flexible. This motivates using normalizing flows as
policy distributions. To provide more intuitions as to why
normalizing flows for control is beneficial to policy opti-
mization, we construct illustrative examples in Appendix
E where we show the capability of normalizing flows to
capture correlation, multi-modality and potentially entail
better exploration to bypass bad local optima.

4. Experiments
In experiments we aim to address the following questions:
(a) Do NF policies outperform simple policies (e.g. factor-
ized Gaussian baseline) as well as recent prior works (e.g.
(Chou et al., 2017)) with trust region search algorithms on
benchmark tasks, and especially on high-dimensional tasks

1Here we properly scale rt to make the probability well defined.
2Here the discount factor should also be γ = 1. We can define

an inference problem that incorporates the discount factor γ < 1,
which is ommited here.

with complex dynamics? (b) How sensitive are NF policies
to hyper-parameters compared to Gaussian policies?

To address (a), we carry out comparison in three parts: (1)
We implement and compare NF policy with Gaussian mix-
tures model (GMM) policy and factorized Gaussian policy,
on a comprehensive suite of tasks in OpenAI gym MuJoCo
(Brockman et al., 2016; Todorov, 2008), rllab (Duan et al.,
2016), Roboschool Humanoid (Schulman et al., 2017b) and
Box2D (Brockman et al., 2016) illustrated in Appendix F;
(2) We implement and compare NF with straightforward
architectural alternatives and prior work (Chou et al., 2017)
on tasks with complex dynamics; (3) Lastly but importantly,
we compare NF with Gaussian policy results directly re-
ported in prior works (Schulman et al., 2017b; Wu et al.;
Chou et al., 2017; Haarnoja et al., 2018b). For (1) we show
results for both TRPO and ACKTR (see Appendix C), and
for (2)(3) only for TRPO (see Appendix C). Here, we note
that (3) is critical because the performance of the same algo-
rithm across papers can be very different (Henderson et al.,
2017), and here we aim to show that our proposed method
achieves significant gains consistently over results reported
in prior works. To address (b), we perform an ablation
study in Appendix C. Implementation details can be found
in Appendix A.

TRPO - Comparison with Gaussian & GMM. In Fig-
ure 1 we show the results on benchmark control problems
from MuJoCo and in Figure 4 we show the results on Box2D
tasks. We compare four policy classes under TRPO: fac-
torized Gaussian (blue curves), GMM with K = 2 (yellow
curves), GMM with K = 5 (green curves) and normalizing
flows (red curves). For GMM, each cluster has the same
probability weight and each cluster is a factorized Gaussian
with independent parameters. We find that though GMM
policies with K ≥ 2 outperform factorized Gaussian on
relatively complex tasks such as Ant and HalfCheetah, they
suffer from less stable learning in more high-dimensional
Humanoid tasks. However, normalizing flows consistently
outperforms GMM and factorized Gaussian policies on a
wide range of tasks, especially tasks with highly complex
dynamics such as Humanoid.

Since we make minimal changes to the algorithm and algo-
rithmic hyper-parameters, we could attribute performance
gains to the architectural difference. One critical question
is whether the more effective policy optimization results
from an increased number of parameters? To study the ef-
fect of network size, we train Gaussian policy with large
networks (with more parameters than NF policy) and find
that this does not lead to performance gains. We detail the
results of Gaussian with bigger networks in Appendix C.
Such comparison further validates our speculation that the
performance gains result from an expressive policy distribu-
tion.
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(a) Reacher (b) Swimmer (c) Inverted Pendulum (d) Double Pendulum

(e) Hopper (f) HalfCheetah (g) Ant (h) Walker

(i) Sim. Humanoid (L) (j) Humanoid (L) (k) Humanoid (l) HumanoidStandup

Figure 1. MuJoCo Benchmark: learning curves on MuJoCo locomotion tasks. Tasks with (L) are from rllab. Each curve corresponds to a
different policy class (Red: NF (labelled as implicit), Green: GMM K = 5, Yellow: GMM K = 2, Blue: Gaussian). We observe that the
NF policy consistently outperforms other baselines on high-dimensional complex tasks (Bottom two rows).

5. Related Work
Policy Classes. Several recent prior works have proposed
to boost RL algorithms with expressive policy classes. Thus
far, expressive policy classes have shown improvement over
baselines in off-policy learning: Soft Q-learning (SQL)
(Haarnoja et al., 2017) takes an implicit generative model as
the policy and trains the policy by Stein variational gradients
(Liu & Wang, 2016); Tang & Agrawal (2018) applies an im-
plicit policy along with a discriminator to compute entropy
regularized gradients. Latent space policy (Haarnoja et al.,
2018a) applies normalizing flows as the policy and displays
promising results on hierarchical tasks; Soft Actor Critic
(SAC) (Haarnoja et al., 2018b) applies a mixture of Gaus-
sian as the policy. However, aformentioned prior works do
not disentangle the architectures from the algorithms, it is
hence not clear whether the gains come from an expressive
policy class or novel algorithmic procedures. In this work,
we fix the trust region search algorithms and study the net
effect of expressive policy classes. For on-policy optimiza-
tion, Gaussian policy is the default baseline (Schulman et al.,
2015; 2017a). Recently, (Chou et al., 2017) propose Beta
distribution as an alternative to Gaussian and show improve-
ments on TRPO. We make a full comparison and show that

expressive distributions achieves more consistent and stable
gains than such bounded distributions for TRPO.

Normalizing flows. Normalizing flows is widely applied
in probabilistic generative modeling and variational in-
ference (Rezende & Mohamed, 2015; Dinh et al., 2014;
Louizos & Welling, 2017; Dinh et al., 2016). Complement
to prior works, we show that normalizing flows can signifi-
cantly boost the performance of TRPO/ACKTR. We limit
our attention to the architectures of (Dinh et al., 2016) while
more recent flows structure might offer additional perfor-
mance gains (Kingma & Dhariwal, 2018).

6. Conclusion
We propose normalizing flows as a novel on-policy architec-
ture to boost the performance of trust region policy search.
In particular, we observe that the empirical properties of
the NF policy allows for better exploration in practice. We
evaluate performance of NF policy combined with trust
region algorithms (TRPO/ ACKTR) and show that they con-
sistently and significantly outperform a large number of
previous policy architectures.
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A. Hyper-parameters
All implementations of algorithms (TRPO and ACKTR) are based on OpenAI baselines (Dhariwal et al., 2017). We
implement our own GMM policy and NF policy. Environments are based on OpenAI gym (Brockman et al., 2016), rllab
(Duan et al., 2016) and Roboschool (Schulman et al., 2017b).

We remark that various policy classes have exactly the same interface to TRPO and ACKTR. In particular, TRPO and
ACKTR only requires the computation of log πθ(a|s) (and its derivative). Different policy classes only differ in how they
parameterize πθ(a|s) and can be easily plugged into the algorithmic procedure originally designed for Gaussian (Dhariwal
et al., 2017).

We present the details of each policy class as follows.

Factorized Gaussian Policy. A factorized Gaussian policy has the form πθ(·|s) = N(µθ(s),Σ), where Σ is a diagonal
matrix with Σii = σ2

i . We use the default hyper-parameters in baselines for factorized Gaussian policy. The mean µθ(s)
parameterized by a two-layer neural network with 64 hidden units per layer and tanh activation function. The standard
deviation σ2

i is each a single variable shared across all states.

Factorized Gaussian+tanh Policy. The architecture is the same as above but the final layer is added a tanh transformation
to ensure that the mean µθ(s) ∈ [−1, 1].

GMM Policy. A GMM policy has the form πθ(·|s) =
∑K
i=1 piN(µ

(i)
θ (s),Σi), where the cluster weight pi = 1

K is fixed
and µ(i)

θ (s),Σi are Gaussian parameters for the ith cluster. Each Gaussian has the same parameterization as the factorized
Gaussian above.

Beta Policy. A Beta policy has the form π(αθ(s), βθ(s)) where π is a Beta distribution with parameters αθ(s), βθ(s).
Here, αθ(s) and βθ(s) are shape/rate parameters parameterized by two-layer neural network fθ(s) with a softplus at the
end, i.e. αθ(s) = log(exp(fθ(s)) + 1) + 1, following (Chou et al., 2017). Actions sampled from this distribution have a
strictly finite support. We notice that this parameterization introduces potential instability during optimization: for example,
when we want to converge on policies that sample actions at the boundary, we require αθ(s)→∞ or βθ(s)→∞, which
might be very unstable. We also observe such instability in practice: when the trust region size is large (e.g. ε = 0.01) the
training can easily terminate prematurely due to numerical errors. However, reducing the trust region size (e.g. ε = 0.001)
will stabilize the training but degrade the performance.

Normalizing flows Policy (NF Policy). A NF policy has a generative form: the sample a ∼ πθ(·|s) can be generated via
a = fθ(s, ε) with ε ∼ ρ0(·). The detailed architecture of fθ(s, ε) is in Appendix B.

Other Hyper-parameters. Value functions are all parameterized as two-layer neural networks with 64 hidden units per
layer and tanh activation function. Trust region sizes are enforced via a constraint parameter ε, where ε ∈ {0.01, 0.001}
for TRPO and ε ∈ {0.02, 0.002} for ACKTR. All other hyper-parameters are default parameters from the baselines
implementations.

B. Normalizing flows Policy Architecture
We design the neural network architecture following the idea of (Dinh et al., 2014; 2016). Recall that normalizing flows
(Rezende & Mohamed, 2015) consists of layers of transformation as follows ,

x = gθK ◦ gθK−1
◦ ... ◦ gθ2 ◦ gθ1(ε),

where each gθi(·) is an invertible transformation. We focus on how to design each atomic transformation gθi(·). We overload
the notations and let x, y be the input/output of a generic layer gθ(·),

y = gθ(x).
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We design a generic transformation gθ(·) as follows. Let xI be the components of x corresponding to subset indices
I ⊂ {1, 2...m}. Then we propose as in (Dinh et al., 2016),

y1:d = x1:d

yd+1:m = xd+1:m � exp(s(x1:d)) + t(x1:d), (7)

where t(·), s(·) are two arbitrary functions t, s : Rd 7→ Rm−d. It can be shown that such transformation entails a simple
Jacobien matrix | ∂y

∂xT
| = exp(

∑m−d
j=1 [s(x1:d)]j) where [s(x1:d)]j refers to the jth component of s(x1:d) for 1 ≤ j ≤ m− d.

For each layer, we can permute the input x before apply the simple transformation (7) so as to couple different components
across layers. Such coupling entails a complex transformation when we stack multiple layers of (7). To define a policy, we
need to incorporate state information. We propose to preprocess the state s ∈ Rn by a neural network Lθs(·) with parameter
θs, to get a state vector Lθs(s) ∈ Rm. Then combine the state vector into (7) as follows,

z1:d = x1:d

zd+1:m = xd+1:m � exp(s(x1:d)) + t(x1:d)

y = z + Lθs(s). (8)

It is obvious that x ↔ y is still bijective regardless of the form of Lθs(·) and the Jacobien matrix is easy to compute
accordingly.

In locomotion benchmark experiments, we implement s, t both as 4-layers neural networks with l1 = 3 units per hidden
layer. We stack K = 4 transformations: we implement (8) to inject state information only after the first transformation, and
the rest is conventional coupling as in (7). Lθs(s) is implemented as a feedforward neural network with 2 hidden layers each
with 64 hidden units. Value function critic is implemented as a feedforward neural network with 2 hidden layers each with
64 hidden units with rectified-linear between hidden layers.

C. Additional Experiments
C.1. Benchmark experiments

TRPO - Comparison with other Architecture Alternatives. In Table 1, we compare with some architectural alternatives
and recently proposed policy classes: Gaussian distribution with tanh non-linearity at the output layer, and Beta distribution
(Chou et al., 2017). The primary motivation for these architectures is that they either bound the Gaussian mean (Gaussian
+tanh) or strictly bound the distribution support (Beta distribution), which has been claimed to remove the implicit bias
of an unbounded action distribution (Chou et al., 2017). In Table 2, We compare the NF policy with these alternatives on
benchmark tasks with complex dynamics. We find that the NF policy performs significantly better than other alternatives
uniformly and consistently across all presented tasks.

Here we discuss the results for Beta distribution. In our implementation, we find training with Beta distribution tends to
generate numerical errors when the trust region size is large (e.g. ε = 0.01). Shrinking the trust region size (e.g. ε = 0.001)
reduces numerical errors but also greatly degrades the learning performance. We suspect that this is because the Beta
distribution parameterization (Appendix A and (Chou et al., 2017)) is numerically unstable, and we discuss the potential
causes in Appendix A. The results in Table 2 for Beta policy are obtained as the performance of the last 10 iterations before
termination (potentially prematurely due to numerical error). We make further comparison with Beta policy in Appendix C
and show that the NF policy achieves performance gains more consistently and stably.

Our findings suggest that for TRPO, an expressive policy brings more benefits than a policy with a bounded support. We
speculate that this is because bounded distributions require warping the sampled actions in a way that makes the optimization
more difficult. For example, consider 1-d action space when NF is combined with tanh nonlinearity for the final output 3:
the samples a are bounded but an extra factor (1− a2) is introduced in the gradient w.r.t. θ. When a ≈ ±1, the gradient can
vanish quickly and make it hard to sample on the exact boundary a = ±1. In practice, we also find the performance of NF
policy + tanh to be inferior.

3Similar to the Gaussian + tanh construct, we can bound the support of the NF policy by applying tanh at the output, the ending
distribution still has tractable likelihood (Haarnoja et al., 2018b).
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TRPO - Comparison with Gaussian on Roboschool Humanoid and Box2D. To further illustrate the strength of the
NF policy on high-dimensional tasks, we evaluate normalizing flows vs. factorized Gaussian on Roboschool Humanoid
tasks shown in Figure 3. We observe that ever since the early stage of learning (steps ≤ 107) NF policy (red curves) already
outperforms Gaussian (blue curves) by a large margin. In 3 (a)(b), Gaussian is stuck in a locally optimal gait and cannot
progress, while the NF policy can bypass such gaits and makes consistent improvement. Surprisingly, BipedalWalker
(Hardcore) Box2D task (Figure 4) is very hard for the Gaussian policy, while the NF policy can make consistent progress
during training.

TRPO - Comparison with Gaussian results in prior works. Schulman et al. (2017b); Wu et al. report results on TRPO
with Gaussian policy, represented as 2-layer neural network with 64 hidden units per layer. Since they report the performance
after 106 steps of training, we record the performance of NF policy after 106 steps of training for fair comparison in Table 1.
The results of (Schulman et al., 2017b; Wu et al.) in Table 1 are directly estimated from the plots in their paper, following
the practice of (Mania et al., 2018). We see that our proposed method outperforms the Gaussian policy + TRPO reported in
(Schulman et al., 2017b; Wu et al.) for most control tasks.

Some prior works (Haarnoja et al., 2018b) also report the results for Gaussian policy after training for more steps. We also
offer such a comparison in Appendix C, where we show that the NF policy still achieves significantly better results on
reported tasks.

Comprehensive comparison across results reported in prior works ensures that we compare with (approximate) state-of-the-
art results. Despite implementation and hyper-parameter differences from various prior works, the NF policy can consistently
achieve faster rate of learning and better asymptotic performance.

ACKTR - Comparison with Gaussian. We also evaluate different policy classes combined with ACKTR (Wu et al.). In
Figure 2, we compare factorized Gaussian (red curves) against NF (blue curves) on a suite of MuJoCo and Roboschool
control tasks. Though the NF policy does not uniformly outperform Gaussian on all tasks, we find that for tasks with
relatively complex dynamics (e.g. Ant and Humanoid), the NF policy achieves significant performance gains. We find that
the effect of an expressive policy class is fairly orthogonal to the additional training stability introduced by ACKTR over
TRPO and the combined algorithm achieves even better performance.

(a) Walker (b) Walker (R) (c) HalfCheetah (d) HalfCheetah (R)

(e) Ant (R) (f) Sim. Humanoid (L) (g) Humanoid (L) (h) Humanoid

Figure 2. MuJoCo and Roboschool Benchmarks : learning curves on locomotion tasks for ACKTR. Each curve corresponds to a different
policy class (Red: NF (labelled as implicit), Blue: Gaussian). Tasks with (R) are from Roboschool. The NF policy achieves consistent and
significant performance gains across high-dimensional tasks with complex dynamics.

C.2. Sensitivity to Hyper-parameters and Ablation Study

We evaluate the policy classes’ sensitivities to hyper-parameters in Appendix C, where we compare Gaussian vs. normalizing
flows. Recall that ε is the constant for KL constraint. For each policy, we uniformly random sample log10 ε ∈ [−3.0,−2.0]
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Table 1. Comparison with TRPO results reported in (Schulman et al., 2017b; Wu et al.). Since Schulman et al. (2017b); Wu et al. report
the performance for 106 steps of training, we also record the performance of our method after training for 106 for fair comparison. Better
results are highlighted in bold font. When results are not statistically different, both are highlighted.

TASK NF (OURS) GAUSSIAN (OURS) SCHULMAN ET AL. 2017 WU ET AL. 2017

REACHER ≈ −10 ≈ −115 ≈ −115 ≈ −10
SWIMMER ≈ 64 ≈ 90 ≈ 120 ≈ 40
INVERTED PEND. ≈ 900 ≈ 800 ≈ 900 ≈ 1000
DOUBLE PEND. ≈ 7800 < 1000 ≈ 0 < 1000
HOPPER ≈ 2000 ≈ 2000 ≈ 2000 ≈ 1400
HALFCHEETAH ≈ 1500 ≈ 0 ≈ 0 < 500
WALKER2D ≈ 1700 ≈ 2000 ≈ 1000 ≈ 550
ANT ≈ 800 ≈ 0 N/A < −500

Table 2. Table 1: A comparison of various policy classes on complex benchmark tasks. For each task, we show the cumulative rewards
(mean ± std) after training for 107 steps across 5 seeds (for Humanoid (L) it is 7 · 106 steps). For each task, the top two results are
highlighted in bold font. The NF policy (labelled as NF) consistently achieves top two results.

GAUSSIAN GAUSSIAN+TANH BETA NF

ANT −76± 14 −89± 13 2362± 305 1982± 407
HALFCHEETAH 1576± 782 386± 78 1643± 819 2900± 554
HUMANOID 1156± 153 6350± 486 3812± 1973 4270± 142
HUMANOID (L) 64.7± 7.6 38.2± 2.3 37.8± 3.4 87.2± 19.6
SIM. HUMANOID (L) 6.5± 0.2 4.4± 0.1 4.2± 0.2 8.0± 1.8
HUMANOID STANDUP 137955± 9238 133558± 9238 111497± 15031 142568± 9296

and one of five random seeds, and train policies with TRPO for a fixed number of time steps. The final performance
(cumulative rewards) is recorded and Figure 5 in Appendix C shows the quantile plots of final rewards across multiple tasks.
We observe that the NF policy is generally much more robust to such hyper-parameters, importantly to ε. We speculate that
such additional robustness partially stems from the fact that for the NF policy, the KL constraint does not pose very stringent
restriction on the sampled action space, which allows the system to efficiently explore even when ε is small.

We carry out a small ablation study that addresses how hyper-parameters inherent to normalizing flows can impact the
results. Recall that the NF policy (Section 4) consists of K transformations, with the first transformation embedding the
state s into a vector Lθs(s). Here we implement Lθs(s) as a two-layer neural networks with l1 hidden units per layer. We
evaluate on the policy performance as we vary K ∈ {2, 4, 6} and l1 ∈ {3, 5, 7}. We find that the performance of NF policies
are fairly robust to such hyper-parameters (see Appendix C).

C.3. Sensitivity to Hyper-Parameters and Ablation Study

In Figure 6, we show the ablation study of the NF policy. We evaluate how the training curves change as we change the
hyper-parameters of NF policy: number of transformation K ∈ {2, 4, 6} and number of hidden units l1 ∈ {3, 5, 7} in the
embedding function Lθs(·). We find that the performance of the NF policy is fairly robust to changes in K and l1. When K
varies, l1 is set to 3 by default. When l1 varies, K is set to 4 by default.

C.4. Comparison with Gaussian Policy with Big Networks

In our implementation, the NF policy has more parameters than Gaussian policy. A natural question is whether the gains in
policy optimization is due to a bigger network. To test this, we train Gaussian policy with large networks: 2-layer neural
network with 128 hidden units per layer. In Table 3, we find that for Gaussian policy, bigger network does not perform as
well as the smaller network (32 hidden units per layer). Since Gaussian policy with bigger network has more parameters
than NF policy, this validates the claim that the performance gains of NF policy are not (only) due to increased parameters.
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(a) Humanoid (b) HumanoidFlagrun

(c) Flagrun Harder (d) Illustration

Figure 3. Roboschool Humanoid benchmarks: (a)-(c) show learning curves on Roboschool Humanoid locomotion tasks. Each color
corresponds to a different policy class (Red: NF (labelled as implicit), Blue: Gaussian). The NF policy significantly outperforms Gaussian
since the early stage of training. (d) is an illustration of the Humanoid tasks.

C.5. Additional Comparison with Prior works

To ensure that we compare with state-of-the-art results of baseline TRPO, we also compare with prior works that report
TRPO results.

In Table 4, we compare with Gaussian policy + TRPO reported in (Haarnoja et al., 2018b). In (Haarnoja et al., 2018b),
policies are trained for sufficient steps before evaluation, and we estimate their final performance directly from plots in
(Haarnoja et al., 2018b). For fair comparison, we record the performance of NF policy + TRPO. We find that NF policy
significantly outperforms the results in (Haarnoja et al., 2018b) on most reported tasks.

Additional Comparison with Beta Distribution. Chou et al. (2017) show the performance gains of Beta policy for a
limited number of benchmark tasks, most of which are relatively simple (with low dimensional observation space and action
space). However, they show performance gains on Humanoid-v1. We compare the results of our Figure 1 with Figure 5(j)
in (Chou et al., 2017) (assuming each training epoch takes ≈ 2000 steps): within 10M training steps, NF policy achieves
faster progress, reaching ≈ 4000 at the end of training while Beta policy achieves ≈ 1000. According to (Chou et al.,
2017), Beta distribution can have an asymptotically better performance with ≈ 6000, while we find that NF policy achieves
asymptotically ≈ 5000.
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(a) BipedalWalker (b) LunarLander

Figure 4. Box2D benchmarks: (a)-(b) show learning curves on Box2D locomotion tasks. Each curve corresponds to a different policy
class (Red: NF (labelled as implicit), Blue: Gaussian). The NF policy also achieves performance gains on Box2D environments.

(a) Reacher (b) Hopper (c) HalfCheetah (d) Sim. Humanoid

Figure 5. Sensitivity to Hyper-parameters: quantile plots of policies’ performance on MuJoCo benchmark tasks under various hyper-
parameter settings. For each plot, we randomly generate 30 hyper-parameters for the policy and train for a fixed number of time steps.
Reacher for 106 steps, Hopper and HalfCheetah for 2 · 106 steps and SimpleHumanoid for ≈ 5 · 106 steps. The NF policy is in general
more robust than Gaussian policy.

D. Reward Structure of Ant Locomotion Task
For Ant locomotion task (Brockman et al., 2016), the state space S ⊂ R116 and action space A ⊂ R8. The state space
consists of all the joint positions and joint velocities of the Ant robot, while the action space consists of the torques applied
to joints. The reward function at time t is rt ∝ vx where vx is the center-of-mass velocity of along the x-axis. In practice
the reward function also includes terms that discourage large torques and encourages the Ant robot to stay alive (as defined
by not flipping itself over).

Intuitively, the reward function encourages the robot to move along x-axis as fast as possible. This is reflected in Figure 8 (c)
as the trajectories (red) generated by the NF policy is spreading along the x-axis. Occasionally, the robot also moves in the
opposite direction.

E. Understanding Normalizing flows Policy for Control
In the following we illustrate the empirical properties of NF policy on toy examples.

Generating Samples under KL Constraints. We analyze the properties of NF policy vs. Gaussian policy under the KL
constraints of TRPO. As a toy example, assume we have a factorized Gaussian in R2 with zero mean and diagonal covariance
I · σ2 where σ2 = 0.12. Let π̂o be the empirical distribution formed by samples drawn from this Gaussian. We can define a
KL ball centered on π̂o as all distributions such that a KL constraint is satisfied B(π̂o, ε) = {π : KL[π̂o||π] ≤ ε}. We study
a typical normalizing flows distribution and a factorized Gaussian distribution on the boundary of such a KL ball (such
that KL[π̂o||π] = ε). We obtain such distributions by randomly initializing the distribution parameters and then running
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(a) Reacher: K (b) Hopper: K (c) Reacher: l1 (d) Hopper: l1

Figure 6. Sensitivity to normalizing flows Hyper-parameters: training curves of the NF policy under different hyper-parameter settings
(number of hidden units l1 and number of transformation K, on Reacher and Hopper task. Each training curve is averaged over 5 random
seeds and we show the mean ± std performance. Vertical axis is the cumulative rewards and horizontal axis is the number of time steps.)

Table 3. Comparison of Gaussian policy with networks of different sizes. Big network has 128 hidden units per layer while small network
has 32 hidden units per layer. Both networks have 2 layers. Small networks generally performs better than big networks. Below we show
averageg ± std cumulative rewards after training for 5 · 106 steps.

TASK GAUSSIAN (BIG) GAUSSIAN (SMALL)

ANT −104± 30 −94± 44
SIM. HUMAN. (L) 5.1± 0.7 6.4± 0.4
HUMANOID 501± 14 708± 43
HUMANOID (L) 20± 2 53± 9

gradient updates until KL[π̂o||π] ≈ ε. In Figure 7 (a) we show the log probability contour of such a factorized Gaussian vs.
normalizing flows, and in (b) we show their samples (blue are samples from the distributions on the boundary of the KL
ball and red are empirical samples of π̂o). As seen from both plots, though both distributions satisfy the KL constraints,
normalizing flows distribution has much larger variance than the factorized Gaussian, which also leads to a much larger
effective support.

Such sample space properties have practical implications. For a factorized Gaussian distribution, enforcing KL constraints
does not allow the new distribution to generate samples that are too far from the ’center’ of the old distribution. On the other
hand, for a normalizing flows distribution, the KL constraint does not hinder the new distribution to have a very distinct
support from the reference distribution (or the old policy iterate), hence allowing for more efficient exploration that bypasses
local optimal in practice.

Expressiveness of Normalizing flows Policy. We illustrate two potential strengths of the NF policy: learning correlated
actions and learning multi-modal policy. First consider a 2D bandit problem where the action a ∈ [−1, 1]2 and r(a) =
−aTΣ−1a for some positive semidefinite matrix Σ. In the context of conventional RL objective J(π), the optimal policy
is deterministic π∗ = [0, 0]T . However, in maximum entropy RL (Haarnoja et al., 2017; 2018b) where the objective is
J(π) + cH

[
π
]
, the optimal policy is π∗ent ∝ exp( r(a)

c ), a Gaussian with Σ
c as the covariance matrix (red curves show the

density contours). In Figure 8 (a), we show the samples generated by various trained policies to see whether they manage
to learn the correlations between actions in the maximum entropy policy π∗ent. We find that the factorized Gaussian policy
cannot capture the correlations due to the factorization. Though Gaussian mixtures models (GMM) with K ≥ 2 components
are more expressive than factorized Gaussian, all the modes tend to collapse to the same location and suffer the same issue as
factorized Gaussian. On the other hand, the NF policy is much more flexible and can fairly accurately capture the correlation
structure of π∗ent.

To illustrate multi-modality, consider again a 2D bandit problem (Figure 8 (b)) with reward r(a) = maxi∈I{(a−µi)TΛ−i (a−
µi)} where Λi, i ∈ I are diagonal matrices and µi, i ∈ I are modes of the reward landscape. In our example we set |I| = 2
two modes and the reward contours are plotted as red curves. Notice that GMM with varying K can still easily collapse to
one of the two modes while the NF policy generates samples that cover both modes.

To summarize the above two cases, since the maximum entropy objective J(π) + cH[π] = −KL[π||π∗ent], the policy search
problem is equivalent to a variational inference problem where the variational distribution is π and the target distribution
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Table 4. Comparison with TRPO results reported in (Haarnoja et al., 2018b). Haarnoja et al. (2018b) train on different tasks for different
time steps, we compare the performance of our method with their results with the same training steps. Better results are highlighted in
bold font. When results are not statistically different, both are highlighted.

TASK NF (OURS) GAUSSIAN (OURS) HARRNOJA ET AL. 2018

HOPPER (2M) ≈ 2000 ≈ 2000 ≈ 1300
HALFCHEETAH (10M) ≈ 2900 ≈ 1600 ≈ 1500
WALKER2D (5M) ≈ 3200 ≈ 3000 ≈ 800
ANT (10M) ≈ 2000 ≈ 0 ≈ 1250
HUMANOIDRLLAB (7M) ≈ 90 ≈ 60 ≈ 90

(a) KL ball: Contours (b) KL ball: Samples

Figure 7. Analyzing normalizing flows vs. Gaussian: Consider a 2D Gaussian distribution with zero mean and factorized variance
σ2 = 0.12. Samples from the Gaussian form an empirical distribution π̂o (red dots in (b)) and define the KL ball B(π̂o, ε) = {π :
KL[π̂o||π] ≤ ε} centered at π̂o. We then find a NF distribution and a Gaussian distribution at the boundary of B(π̂, 0.01) such that the
constraint is tight. (a) Contour of log probability of a normalizing flows distribution (right) vs. Gaussian distribution (left); (b) Samples
(blue dots) generated from NF distribution (right) and Gaussian distribution (left).

is π∗ent ∝ exp( r(a)
c ). Since NF policy is a more expressive class of distribution than GMM and factorized Gaussian, we

also expect the approximation to the target distribution to be much better (Rezende & Mohamed, 2015). This control as
inference perspective provides partial justification as to why an expressive policy such as NF policy achieves better practical
performance.

The properties of NF policy illustrated above potentially allow for better exploration during training and help bypass bad
local optima. For a more realistic example, we illustrate such benefits with the locomotion task of Ant robot (Figure 8 (d))
(Brockman et al., 2016). In Figure 8 (c) we show the robot’s 2D center-of-mass trajectories generated by NF policy (red)
vs. Gaussian policy (blue) after training for 2 · 106 time steps. We observe that the trajectories by NF policy are much
more widespread, while trajectories of Gaussian policy are quite concentrated at the initial position (the origin [0.0, 0.0]).
Behaviorally, the Gaussian policy gets the robot to jump forward quickly, which achieves high immediate rewards but
terminates the episode prematurely (due to a termination condition of the task). On the other hand, the NF policy bypasses
such locally optimal behavior by getting the robot to move forward in a fairly slow but steady manner, even occasionally
move in the opposite direction to the high reward region (Task details in Appendix D).

F. Illustration of Locomotion tasks
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(a) Correlated Actions (b) Bimodal Rewards

(c) Ant Trajectories (d) Ant Illustration

Figure 8. Expressiveness of NF policy: (a) Bandit problem with reward r(a) = −aT Σ−1a. The maximum entropy optimal policy is a
Gaussian distribution with Σ as its covariance (red contours). The NF policy (blue) can capture such covariance while Gaussian cannot
(green). (b) Bandit problem with multi-modal reward (red contours the reward landscape). normalizing flows policy can capture the
multi-modality (blue) while Gaussian cannot (green). (c) Trajectories of Ant robot. The trajectories of Gaussian policy center at the initial
position (the origin [0.0, 0.0]), while trajectories of NF policy are much more widespread. (d) Illustration of the Ant locomotion task.

Figure 9. Illustration of benchmark tasks in OpenAI MuJoCo (Brockman et al., 2016; Todorov, 2008), rllab (top row) (Duan et al., 2016)
and Roboschool (bottom row) (Schulman et al., 2017b).


