
Block Neural Autoregressive Flow

Nicola De Cao 1 2 Wilker Aziz 1 Ivan Titov 1 2

Abstract
Normalising flows (NFs) map two density func-
tions via a differentiable bijection whose Jaco-
bian determinant can be computed efficiently. Re-
cently, as an alternative to hand-crafted bijections,
Huang et al. (2018) proposed neural autoregres-
sive flow (NAF) which is a universal approximator
for density functions. Their flow is a neural net-
work (NN) whose parameters are predicted by an-
other NN. The latter grows quadratically with the
size of the former and thus an efficient technique
for parametrization is needed. We propose block
neural autoregressive flow (B-NAF), a much more
compact universal approximator of density func-
tions, where we model a bijection directly using
a single feed-forward network. Invertibility is
ensured by carefully designing each affine trans-
formation with block matrices that make the flow
autoregressive and (strictly) monotone. We com-
pare B-NAF to NAF and other established flows
on density estimation and approximate inference
for latent variable models. Our proposed flow is
competitive across datasets while using orders of
magnitude fewer parameters.

1. Introduction
Much of the research in Normalizing Flows (NFs) focuses
on designing expressive transformations while satisfying
practical constraints. In particular, autoregressive flows
(AFs) decompose a joint distribution over y ∈ Rd into
a product of d univariate conditionals. A transformation
y = f(x), that realizes such a decomposition, has a lower
triangular Jacobian with the determinant (necessary for ap-
plication of the change of variables theorem for densities)
computable in O(d)-time. Kingma et al. (2016) proposed
inverse autoregressive flows (IAFs), an AF based on trans-
forming each conditional by a composition of a finite num-
ber of trivially invertible affine transformations.

1University of Amsterdam, The Netherlands 2University of
Edinburgh, United Kingdom. Correspondence to: Nicola De Cao
<nicola.decao@uva.nl>.

First workshop on Invertible Neural Networks and Normalizing
Flows (ICML 2019), Long Beach, CA, USA

Recently, Huang et al. (2018) introduced neural autoregres-
sive flows (NAFs). They replace IAF’s transformation by
a learned bijection realized as a strictly monotonic neural
network. Notably, they prove that their method is a uni-
versal approximator of real and continuous distributions.
Though, whereas parametrizing affine transformations in
an IAF requires predicting d pairs of scalars per step of
the flow, parametrizing a NAF requires predicting all the
parameters of a feed-forward transformer network. The con-
ditioner network which parametrizes the transformer grows
quadratically with the width of the transformer network,
thus efficient parametrization techniques are necessary. A
NAF is an instance of a hyper-network (Ha et al., 2017).

We propose block neural autoregressive flows (B-NAFs) 1,
which are AFs based on a novel transformer network which
transforms conditionals directly, i.e. without the need for
a conditioner network. To do that we exploit the fact that
invertibility only requires ∂yi/∂xi > 0, and therefore, care-
ful design of a feed-forward network can ensure that the
transformation is both autoregressive (with unconstrained
manipulation of x<i) and strictly monotone (with positive
∂yi/∂xi). We do so by organizing the weight matrices of
dense layers in block matrices that independently transform
subsets of the variables and constrain these blocks to guar-
antee that ∂yi/∂xj = 0 for j > i and that ∂yi/∂xi > 0.
Our B-NAFs are much more compact than NAFs while
remaining universal approximators of density functions.

2. Background
In this section, we provide an introduction to normalizing
flows and their applications (§ 2.1). Then, we motivate
autoregressive flows in § 2.2 and present the necessary back-
ground for our contributions (§ 2.3).

2.1. Normalizing Flow

A (finite) normalizing flow is a bijective function f : X →
Y between two continuous random variables X ∈ X ⊆ Rd
and Y ∈ Y ⊆ Rd (Tabak et al., 2010). The change of vari-
ables theorem expresses a relation between the probability
density functions pY (y) and pX(x):

pY (y) = pX(x)
∣∣detJf(x)∣∣−1 , (1)

1https://github.com/nicola-decao/BNAF

https://github.com/nicola-decao/BNAF

Block Neural Autoregressive Flow

where y = f(x), and
∣∣detJf(x)∣∣ is the absolute value of

the determinant of the Jacobian of f evaluated at x. The Ja-
cobian matrix is defined as

(
Jf(x)

)
ij
= ∂f(x)i/∂xj . The

determinant quantifies how f locally expands or contracts
regions of X . Note that a composition of invertible func-
tions remain invertible, thus a composition of NFs is itself a
normalizing flow.

2.2. Autoregressive Flows

We can construct f(x) such that its Jacobian is lower trian-
gular, and thus has determinant

∏d
i=1 ∂f(x)i/∂xi , which

is computed in time O(d). Flows based on autoregressive
transformations meet precisely this requirement (Kingma
et al., 2016; Oliva et al., 2018; Huang et al., 2018). For
a multivariate random variable X = 〈X1, . . . , Xd〉 with
d > 1, we can use the chain rule to express the joint proba-
bility of x as product of d univariate conditional densities:

pX(x) = pX1
(x1)

d∏
i=2

pXi|X<i(xi|x<i) . (2)

When we then apply a normalizing flow to each univariate
density, we have an autoregressive flow. Specifically, we
can use a set of functions f (i) that can be decomposed via
conditioners c(i), and invertible transformers t(i):

yi = f
(i)
θ (x≤i) = t

(i)
θ (xi, c

(i)
θ (x<i)) , (3)

where each transformer t(i) must be an invertible function
with respect to xi, and each c(i) is an unrestricted function.
The resulting flow has a lower triangular Jacobian since
each yi depends only on x≤i. The flow is invertible when
the Jacobian is constructed to have a non-zero diagonal.

2.3. Neural Autoregressive Flow

The invertibility of the flow as a whole depends on each
t(i) being an invertible function of xi. For example, Dinh
et al. (2014) and Kingma et al. (2016) model each t(i) as
an affine transformation whose parameters are predicted by
c(i). As argued by Huang et al. (2018), these transforma-
tions were constructed to be trivially invertible, but their
simplicity leads to a cap on expressiveness of f , thus re-
quiring complex conditioners and a composition of multiple
flows. They propose instead to learn a complex bijection
using a neural network monotonic in xi — this only requires
constraining t(i) to having non-negative weights and using
strictly increasing activation functions. Each conditioner
c(i) is an unrestricted function of x<i. To parametrize a
monotonically increasing transformer network t(i), the out-
puts of each conditioner c(i) are mapped to the positive real
coordinate space by application of an appropriate activation
(e.g. exp). The result is a flexible transformation with lower

triangular Jacobian whose diagonal elements are positive.2

For efficient computation of all pseudo-parameters, as
Huang et al. (2018) call the conditioners’ outputs, they use a
masked autoregressive network (Germain et al., 2015). The
Jacobian of a NAF is computed using the chain rule on fθ
through all its hidden layers {h(`)}l`=1:

Jfθ(x) =
[
∇h(l)y(

] [
∇h(l−1)h(l)

]
. . .
[
∇xh

(1)
]
. (4)

Since fθ is autoregressive, Jfθ(x) is lower triangular and
only the diagonal needs to be computed, i.e. ∂yi/∂xi for
each i. Thus, this operation requires only computing the
derivatives of each t(i), reducing the time complexity.

Because the universal approximation theorem for densities
holds for NAFs (Huang et al., 2018), increasing the expres-
siveness of a NAF is only a matter of employing larger
transformer networks. However, the conditioner grows
quadratically with the size of the transformer network and
a combination of restricting the size of the transformer and
a technique similar to conditional weight normalization
(Krueger et al., 2017) is necessary to reduce the number
of parameters. We propose to parametrize the transformer
network directly without a conditioner network by exploit-
ing the fact that the monotonicity constraint only requires
∂yi/∂xi > 0, and therefore, careful design of a single feed-
forward network can directly realize a transformation that
is both autoregressive (with unconstrained manipulation of
x<i) and strictly monotone (with positive ∂yi/∂xi).

3. Block Neural Autoregressive Flow

In the spirit of NAFs, we model each f (i)θ (x≤i) as a neural
network with parameters θ, but differently from NAFs, we
do not predict θ using a conditioner network, and instead,
we learn θ directly. In dense layers of f (i)θ , we employ affine
transformations with strictly positive weights to process xi.
This ensures strict monotonicity and thus invertibility of
each f (i)θ with respect to xi. However, we do not impose
this constraint on affine transformations of x<i. Addition-
ally, we need to always use invertible activation functions
to ensure that the whole network is bijective (e.g., tanh
or LeakyReLU). Each f

(i)
θ is then a univariate flow im-

plemented as an arbitrarily wide and deep neural network
which can approximate any invertible transformation. Much
like other AFs, we can efficiently compute all f (i)θ in paral-
lel by employing a single masked autoregressive network
(Germain et al., 2015). In the next section, we show how to
construct each affine transformation using block matrices.
Additionally, we show that our flow is an universal approx-

2Note that the expressiveness of a NAF comes at the cost
of analytic invertibility, i.e. though each t(i) is bijective, thus
invertible in principle, inverting the network itself is non-trivial.

Block Neural Autoregressive Flow

imator of density functions in Appendix F. From now on,
we will refer to our novel family of flows as block neural
autoregressive flows (B-NAFs).

3.1. Affine Transformations With Block Matrices

For each affine transformation of x, we parametrize the
bias term freely and we construct the weight matrix W ∈
Rad×bd as a lower triangular block matrix for some a, b ≥
1. We use d × (d + 1)/2 blocks Bij ∈ Ra×b for i ∈
{1, .., d} and 1 ≤ j ≤ i. We let Bij (with i > j) be freely
parametrized and constrain diagonal blocks to be strictly
positive applying an element-wise function g : R → R>0

to each of them. Thus:

W =

g(B11) 0 . . . 0
B21 g(B22) . . . 0

...
...

. . .
...

Bd1 Bd2 . . . g(Bdd)

 , (5)

where we chose g(·) = exp(·). Since the flow has to pre-
serve the input dimensionality, the first and the last affine
transformations in the network must have b = 1 and a = 1,
respectively. Inside the network, the size of a and b can
grow arbitrarily.

The intuition behind the construction of W is that every
row of blocks Bi1, .., Bii is a set of affine transformations
(projections) that are processing x≤i. In particular, blocks
in the upper triangular part of W are set to zero to make
the flow autoregressive. Since the blocks Bii are mapped
to R>0 through g, each transformation in such set is strictly
monotonic for xi and unconstrained on x<i.

B-NAF with masked networks In practice, a more con-
venient parameterization ofW consists of using a full matrix
Ŵ ∈ Rad×bd which is then transformed applying two mask-
ing operations. One mask Md ∈ {0, 1}ad×bd selects only
elements in the diagonal blocks, and a second one Mo se-
lects only off-diagonal and lower diagonal blocks. Thus, for
each layer ` we get

W (`) = g
(
Ŵ (`)

)
�M (`)

d + Ŵ (`) �M (`)
o , (6)

where � is the element-wise product.

Since each weight matrix W (`) has some strictly positive
and some zero entries, we need to take care of a proper
initialization which should take that into account. Indeed,
weights are usually initialized to have a zero centred nor-
mally distributed output with variance dependent on the
output dimensionality (Glorot & Bengio, 2010). Instead of
carefully designing a new initialization technique to take
care of this, we choose to initialize all blocks with a simple
distribution and to apply weight normalization (Salimans &

Kingma, 2016) to better cope the effect of such initialization.
See Appendix C for more details.

When constructing a stacked flow though a composition of n
B-NAF transformations, we add gated residual connections
for improving stability such that the composition is f̂n◦· · ·◦
f̂2 ◦ f̂1 where f̂i(x) = αfi(x)+ (1−α)x and α ∈ (0, 1) is
a trainable scalar parameter.

3.2. Efficient Jacobian computation

Our flow is autoregressive and invertible (see Appendix D
for proofs). Autoregressiveness is particularly useful for an
efficient computation of detJfθ(x) since we only need the
product of its diagonal elements ∂yi/∂xi . Thus, we can
avoid computing the other entries. Since the determinant is
the result of a product of positive values, we also remove
the absolute-value operation resulting in

log |detJfθ(x)| =
d∑
i=0

log
(
Jfθ(x)

)
ii
. (7)

Additionally, when using matrix multiplication, elements
in the diagonal blocks (or entries) depend only on diagonal
blocks of the same row and column partition. Since all
diagonal blocks are positive, we compute them directly in
the log-domain to have more numerically stable operations:

log
(
Jfθ(x)

)
ii
= log g(B

(`)
ii) ?

log J
σ(`)(h

(`−1)
α)

? · · · ? log g(B(1)
ii) ,

(8)

where ? denotes the log-matrix multiplication, σ(`) the
strictly increasing non-linear activation function at layer
`, and α indicates the set of indices corresponding to di-
agonal elements that depend on xi. Notice that, since we
chose g(·) = exp(·) we can remove all redundant operations
log g(·). The log-matrix multiplication can be implemented
with a stable log-sum-exp operation (see Appendix E).

4. Experiments
In this experiment, we use a B-NAF to perform density esti-
mation on 5 real datasets (4 datasets (Dua & Karra Taniski-
dou, 2017) from UCI machine learning repository3 and one
dataset of patches of images (Martin et al., 2001). See Ap-
pendix H.1 for a description of those datasets. We train
using Adam MLE maximizing E pdata [log pX|θ(x)] stacking
5 B-NAF flows (see Appendix H.2 for a complete descrip-
tion of the all other hyper-parameters). We also have two
additional experiments on 2D toy task in Appendix G and
an experiment on variational inference in Appendix I.

Table 1 shows the results reporting log-likelihood on test
set. In all datasets, our B-NAF is better than Real NVP,

3http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml

Block Neural Autoregressive Flow

Model POWER↑ GAS↑ HEPMASS↑ MINIBOONE↑ BSDS300↑
d=6;N=2,049,280 d=8;N=1,052,065 d=21;N=525,123 d=43;N=36,488 d=63;N=1,300,000

Real NVP (Dinh et al., 2017) 0.17±.01 8.33±.14 −18.71±.02 −13.55±.49 153.28±1.78

Glow (Kingma & Dhariwal, 2018) 0.17±.01 8.15±.40 −18.92±.08 −11.35±.07 155.07±.03

MADE MoG (Germain et al., 2015) 0.40±.01 8.47±.02 −15.15±.02 −12.27±.47 153.71±.28

MAF (Papamakarios et al., 2017) 0.30±.01 10.08±.02 −17.73±.02 −12.24±.45 156.36±.28

FFJORD (Grathwohl et al., 2019). 0.46±.01 8.59±.12 −14.92±.08 −10.43±.04 157.40±.19

NAF-DDSF (Huang et al., 2018) 0.62±.01 11.96±.33 −15.09±.40 −8.86±.15 157.43±.30

TAN (Oliva et al., 2018) 0.60±.01 12.06±.02 −13.78±.02 −11.01±.48 159.80±.07

Ours 0.61±.01 12.06±.09 −14.71±.38 −8.95±.07 157.36±.03

Parameters ratio NAF (5) / B-NAF 2.29× 1.30× 17.94× 43.97× 8.24×
Parameters ratio NAF (10) / B-NAF 4.57× 2.60× 35.88× 87.91× 16.48×

Table 1. Log-likelihood on the test set (higher is better) for 4 datasets (Dua & Karra Taniskidou, 2017) from UCI machine learning and
BSDS300 (Martin et al., 2001). Here d is the dimensionality of datapoints and N the size of the dataset. We report average (±std) across
3 independently trained models. We also report the ratios between the number of parameters used by NAF-DDSF (with 5 or 10 flows) and
our B-NAF. In highly dimensional datasets B-NAF uses orders of magnitude fewer parameters than NAF.

Glow, MADE, and MAF and it performs comparable or
better to NAF. B-NAF also outperforms FFJORD in all
dataset except on BSDS300 where there is a marginal dif-
ference (< 0.02%) between the two methods. On GAS
and HEPMASS, B-NAF performs better than most of the
other models and even better than NAF. In other datasets,
the gap in performance compared to NAF is marginal. We
observed that in most cases, the best performing model was
the largest one in the grid search (L = 2 and H = 40d). It
is possible that we do a too narrow hyper-parameter search
compared to what other methods do. For instance, FFJORD
results come from a wider grid search than ours. Grathwohl
et al. (2019), Huang et al. (2018), and Oliva et al. (2018)
also varied the number of flows when tuning.

We compare NAF and our B-NAF in terms of the number
of parameters employed and report the ratio between the
two for each dataset. For datasets with low-dimensional
datapoints (i.e, GAS and POWER) our model uses a compa-
rable number of parameters to NAF. For high-dimensional
datapoints the gap between the parameters used by NAF and
B-NAF grows, with B-NAF much smaller, as we intended.
For instance, on both HEPMASS and MINIBOONE, our
models have marginal differences in performance with NAF
while having respectively ∼ 18× and ∼ 40× fewer pa-
rameters than NAF. This evidence supports our argument
that NAF models are over-parametrized and it is possible
to achieve similar performance with an order of magnitude
fewer parameters. Besides, when training models on GPUs,
being memory efficiency allows to train more models in
parallel on the same device. Additionally, in general, a nor-
malizing flow can be a component of a larger architecture
that might require more memory than the flow itself.

5. Related work
Current research on NFs focuses on constructing expres-
sive parametrized invertible trasformations with tractable
Jacobians. Rezende & Mohamed (2015) were the first to
suggest the use of parameterized flows in the context of
variational inference proposing two parametric families: the
planar and the radial flow. More recently, van den Berg
et al. (2018) generalized the use of planar flows showing
improvements without increasing the number of transfor-
mations, and instead, by making each transformation more
expressive.

In the context of density estimation, Germain et al. (2015)
proposed MADE, a masked feed-forward network that effi-
ciently computes an autoregressive transformation. MADEs
are important building blocks in AFs, such as the inverse
autoregressive flows (IAFs) introduced by Kingma et al.
(2016). IAFs are based on trivially invertible affine trans-
formations of the preceding coordinates of the input vector.
The parameters of each transformation (a location and a
positive scale) are predicted in parallel with a MADE, and
therefore IAFs have a lower triangular Jacobian whose de-
terminant is fast to evaluate.

Larochelle & Murray (2011) were among the first to em-
ploy neural networks for autoregressive density estimation
(NADE) for high-dimensional binary data. Non-linear in-
dependent components estimation (NICE) explored the di-
rection of learning a map from high-dimensional data to
a latent space with a simpler factorized distribution (Dinh
et al., 2014). Papamakarios et al. (2017) proposed masked
autoregressive flows (MAFs) as a generalization of real non-
volume-preserving flows (Real NVP) by Dinh et al. (2017)
showing improvements on density estimation.

Block Neural Autoregressive Flow

References
Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,

D. Neural ordinary differential equations. Advances in
Neural Information Processing Systems, 2018.

Daniels, H. and Velikova, M. Monotone and partially mono-
tone neural networks. IEEE Transactions on Neural Net-
works, 21(6):906–917, 2010.

Dinh, L., Krueger, D., and Bengio, Y. Nice: Non-linear
independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estima-
tion using real NVP. Proceedings of the 5th International
Conference on Learning Representations (ICLR), 2017.

Dua, D. and Karra Taniskidou, E. UCI machine learning
repository, 2017. URL http://archive.ics.uci.
edu/ml.

Germain, M., Gregor, K., Murray, I., and Larochelle, H.
Made: Masked autoencoder for distribution estimation.
In International Conference on Machine Learning, pp.
881–889, 2015.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256, 2010.

Grathwohl, W., Chen, R. T. Q., Bettencourt, J., Sutskever,
I., and Duvenaud, D. FFJORD: Free-form Continuous
Dynamics for Scalable Reversible Generative Models.
International Conference on Learning Representations,
2019.

Ha, D., Dai, A., and Le, Q. V. Hypernetworks. International
Conference on Learning Representations, 2017.

Huang, C.-W., Krueger, D., Lacoste, A., and Courville, A.
Neural autoregressive flows. International Conference
on Learning Representations, 2018.

Hyvärinen, A. and Pajunen, P. Nonlinear independent com-
ponent analysis: Existence and uniqueness results. Neural
Networks, 12(3):429–439, 1999.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. An introduction to variational methods for graphical
models. Machine learning, 37(2):183–233, 1999.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. Proceedings of the 3rd International
Conference on Learning Representations (ICLR), 2014.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. In Advances in Neural
Information Processing Systems, pp. 10236–10245, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. International Conference on Learning Represen-
tations, 2013.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X.,
Sutskever, I., and Welling, M. Improved variational in-
ference with inverse autoregressive flow. In Advances in
neural information processing systems, pp. 4743–4751,
2016.

Krueger, D., Huang, C.-W., Islam, R., Turner, R., Lacoste,
A., and Courville, A. Bayesian hypernetworks. arXiv
preprint arXiv:1710.04759, 2017.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

Larochelle, H. and Murray, I. The neural autoregressive
distribution estimator. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and
Statistics, pp. 29–37, 2011.

Marlin, B., Swersky, K., Chen, B., and Freitas, N. Induc-
tive principles for restricted boltzmann machine learning.
In Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, pp. 509–516,
2010.

Martin, D., Fowlkes, C., Tal, D., and Malik, J. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring eco-
logical statistics. In Computer Vision, 2001. ICCV 2001.
Proceedings. Eighth IEEE International Conference, vol-
ume 2, pp. 416–423. IEEE, 2001.

Oliva, J., Dubey, A., Zaheer, M., Poczos, B., Salakhut-
dinov, R., Xing, E., and Schneider, J. Transforma-
tion autoregressive networks. In Dy, J. and Krause,
A. (eds.), Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 3898–
3907, Stockholmsmssan, Stockholm Sweden, 10–15 Jul
2018. PMLR. URL http://proceedings.mlr.
press/v80/oliva18a.html.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation. In Advances in
Neural Information Processing Systems, pp. 2338–2347,
2017.

Park, K. I. and Park. Fundamentals of Probability and
Stochastic Processes with Applications to Communica-
tions. Springer, 2018.

Polyak, B. T. and Juditsky, A. B. Acceleration of stochastic
approximation by averaging. SIAM Journal on Control
and Optimization, 30(4):838–855, 1992.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://proceedings.mlr.press/v80/oliva18a.html
http://proceedings.mlr.press/v80/oliva18a.html

Block Neural Autoregressive Flow

Rezende, D. J. and Mohamed, S. Variational inference
with normalizing flows. In Proceedings of the 32nd In-
ternational Conference on International Conference on
Machine Learning-Volume 37, pp. 1530–1538. JMLR.
org, 2015.

Salimans, T. and Kingma, D. P. Weight normalization: A
simple reparameterization to accelerate training of deep
neural networks. In Advances in Neural Information
Processing Systems, pp. 901–909, 2016.

Tabak, E. G., Vanden-Eijnden, E., et al. Density estimation
by dual ascent of the log-likelihood. Communications in
Mathematical Sciences, 8(1):217–233, 2010.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop, coursera:
Neural networks for machine learning. University of
Toronto, Technical Report, 2012.

van den Berg, R., Hasenclever, L., Tomczak, J. M., and
Welling, M. Sylvester normalizing flows for variational
inference. 34th Conference on Uncertainty in Artificial
Intelligence (UAI18), 2018.

Block Neural Autoregressive Flow

A. Objective for density estimation
When performing density estimation for a random variable
X , we only have access to samples from the unknown target
distributionX ∼ p? (i.e., the unknown data distribution) but
we do not have access to p? directly (Papamakarios et al.,
2017). Using Equation 1, we can use a normalizing flow to
transform a complex parametric model pX|θ of the target
distribution into a simpler distribution pY (i.e., a uniform or
a Normal distribution), which can be easily evaluated. In
this case, we will learn the parameters θ of the model by
minimizing KL(p?‖pX|θ):

θ∗ = min
θ

KL(p?‖pX|θ) (9)

= min
θ

Ep?(x)
[
log

p?(x)

pX|θ(x)

]
(10)

= min
θ

Ep?(x)[log p?(x)]︸ ︷︷ ︸
=constant

−Ep?(x)[log pX|θ(x)] (11)

= max
θ

Ep?(x)
[
log pY (fθ(x)) + log

∣∣detJfθ(x)∣∣] .
(12)

where pX|θ(x) = pY (y)
∣∣detJfθ(x)∣∣ and y = fθ(t). Notice

that minimizing the KL is equivalent of doing maximum
likelihood estimation (MLE).

B. Objective for density matching
We can learn how to sample from a complex target distribu-
tion p? (or, more generally, an energy function) for which
we have access to its analytical form but we do not have an
available sampling procedure. Using Equation 1, we can
use a normalizing flow to transform samples from a simple
distribution pX , which we can easily evaluate and sample
from, to a complex one (the target). In this case, we estimate
θ by minimizing KL(pY |θ‖p?):

θ∗ = min
θ

KL(pY |θ‖p?) (13)

= min
θ

EpY |θ(y)
[
log

pY |θ(y)

p?(y)

]
(14)

= min
θ

EpY |θ(y)[log pY |θ(y)− log p?(y)] (15)

= min
θ

EpX(x)

[
log pX(x)− log

∣∣detJfθ(x)∣∣ (16)

− log p?(fθ(x))
]
.

where pY |θ(y) = pX(x)
∣∣detJfθ(x)∣∣−1 and y = fθ(x). No-

tice that in general, with normalizing flows, it is possible to
learn a flexible distribution from which we can sample and
evaluate the density of its samples. These two proprieties
are particularly useful in the context of variational inference
(Rezende & Mohamed, 2015).

C. Weight initialization and normalization
Since the weight matrix W has some strictly positive and
some zero entries, we need to take care of a proper initial-
ization. Indeed, it is well known that principled parameters
initialization benefits not only training but also the gener-
alization of neural networks (Glorot & Bengio, 2010). For
instance, Xavier initialization is commonly used and it takes
into account the size of the input and output spaces in the
affine transformations. However, since we have some zero
entries, we cannot benefit from it. We choose instead to
initialize all blocks with a simple distribution and to ap-
ply weight normalization (Salimans & Kingma, 2016) to
better regulate the effect of such initialization. Weight nor-
malization decomposes each row w ∈ Rb·d of W in terms
of the new parameters using w = exp(s) · v/‖v‖ where
v has the same dimensionality of w and s is a scalar. We
initialize v with a simple Normal distribution of zero mean
and unit variance and s = log(u) with u ∼ U(0, 1). Such
reparametrization disentangles the direction and magnitude
of w and it is known to improve and speed up optimization.

D. Autoregressiveness and Invertibility
In this section, we show that our flow fθ : Rd → Rd
meets the following requirements: i) its Jacobian Jfθ(x)
is lower triangular (needed for efficiency in computing its
determinant), and ii) the diagonal entries of such Jacobian
are positive (to ensure that fθ is a bijection).
Proposition 1. The final Jacobian Jfθ(x) of such transfor-
mation is lower triangular.
Proof sketch. When applying the chain rule (Equation 4), the
Jacobian of each affine transformation is W (Equation (6),
a lower triangular block matrix), whereas the Jacobian of
each element-wise activation function is a diagonal matrix.
A matrix multiplication between a lower triangular block
matrix and a diagonal matrix yields a lower triangular block
matrix, and a multiplication between two lower triangular
block matrices results in a lower triangular block matrix.
Therefore, after multiplying all matrices in the chain, the
overall Jacobian is lower triangular.
Proposition 2. When using strictly increasing activation
functions (e.g., tanh or LeakyReLU), the diagonal entries
of Jfθ(x) are strictly positive.
Proof sketch. When applying the chain rule (Equation 4),
the Jacobian of each affine transformation has strictly pos-
itive values in its diagonal blocks where the Jacobian of
each element-wise activation function is a diagonal ma-
trix with strictly positive elements. When using matrix
multiplication between two lower triangular block matri-
ces (or one diagonal and one lower triangular block matrix)
C = AB the resulting blocks on the diagonal of C are
the result of a multiplication between only diagonal blocks
of A,B. Indeed, such resulting blocks depend only on

Block Neural Autoregressive Flow

blocks of the same row and column partition. Using the
notation of Equation 5, the resulting diagonal blocks of C
are B(C)

ii = g(B
(A)
ii)g(B

(B)
ii). Therefore, they are always

positive. Eventually, using the chain rule, the final Jacobian
is a lower triangular matrix with strictly positive elements
in its diagonal.

E. Log-matrix multiplication
The log-matrix multiplication C = A ? B of two matrices
A ∈ Rm×n = log Â and B ∈ Rn×p = log B̂ can be
implemented with a stable log-sum-exp operation since

Cij = log

n∑
k=1

exp
(
Âik + B̂kj

)
. (17)

F. Universal density approximator
In this section, we expose an intuitive proof sketch that our
block neural autoregressive flow can approximate any real
continuous probability density function (PDF).

Given a multivariate real and continuous random variable
X = 〈X1, . . . , Xd〉, its joint distribution can be factorized
into a set of univariate conditional distributions (as in Equa-
tion 2), using an arbitrary ordering of the variables, and we
can define a set of univariate conditional cumulative distri-
bution functions (CDFs) Yi = FXi|X<i(xi|x<i) = P[Xi ≤
xi|X<i = x<i]. According to Hyvärinen & Pajunen (1999),
such decomposition exists and each individual Yi is inde-
pendent as well as uniformly distributed in [0, 1]. Therefore,
we can see FX as a particular normalizing flow that maps
X ∈ Rn to Y ∈ [0, 1]n where the distribution pY is uniform
in the hyper-cube [0, 1]n. Note that FX is an autoregres-
sive function and its Jacobian has a positive diagonal since
∂yi/∂xi = pXi|X<i(xi|x<i).

If each univariate flow f
(i)
θ (see Equation 3) can approxi-

mate any invertible univariate conditional CDF, then fθ can
approximate any PDF (Huang et al., 2018). Note that in
general, a CDF FXi|X<i is non-decreasing, thus not neces-
sary invertible (Park & Park, 2018). Using B-NAF, each
CDF is approximated with an arbitrarily large neural net-
work and the output can be eventually mapped to (0, 1)
with a sigmoidal function. Recalling that we only use posi-
tive weights for processing xi, a neural network with non-
negative weights is an universal approximator of monotonic
functions (Daniels & Velikova, 2010). We use strictly posi-
tive weights to approximate a strictly monotonic function
for xi and we use arbitrary weights for x<i (as there is no
monotonicity constraint for them). Therefore, B-NAF can
approximate any invertible CDF, and thus its corresponding
PDF.

Data Glow Ours

Figure 1. Comparison between Glow and B-NAF on density esti-
mation for 2D toy data.

G. Toy experiments
G.1. Density estimation on toy 2D data

In this experiment, we use our B-NAF to perform density
estimation on 2-dimensional data as this helps us visual-
izing the model capabilities to learn. We use the same
toy data as Grathwohl et al. (2019) comparing the results
with Glow (Kingma & Dhariwal, 2018), as they do. Given
samples from a dataset with empirical distribution pdata,
we parametrize a density pX|θ with a normalizing flow
pX|θ(x) = pY (fθ(x))|det Jfθ(x)| using B-NAF with pY
a standard Normal distribution. We train for 20k itera-
tions a single flow of B-NAF with 3 hidden layers of 100
units each using maximum likelihood estimation (i.e., max-
imizing E pdata [log pX|θ(x)], see Appendix A for more de-
tails and derivation of the objective). We used Adam op-
timizer (Kingma & Ba, 2014) with an initial learning rate
of α = 10−1 (and decay of 0.5 with patience of 2k steps),
default β1, β2, and a batch size of 200. We took figures
of Glow from (Grathwohl et al., 2019) who trained such
models with 100 layers.

Results The learned distributions of both Glow and our
method can be seen in Figure 1. Glow is capable of learn-
ing a multi-modal distribution, but it has issues assigning
the correct density in areas of low probability between dis-
connected regions. Our model is instead able to perfectly
capture both multi-modality and discontinuities.

G.2. Density matching on toy 2D data

In this experiment, we use B-NAF to perform density match-
ing on 2-dimensional target energy functions to visualize
the model capabilities of matching them. We use the same

Block Neural Autoregressive Flow

1

Target PF (K=32) Ours

2

3

4

Figure 2. Comparison between planar flow (PF) and B-NAF on
four 2D energy functions from Table 1 of (Rezende & Mohamed,
2015).

energy functions described by Rezende & Mohamed (2015)
comparing the results with them (using planar flows). For
this task, we train a parameterized flow minimizing the KL
divergence between the learned qY |θ and the given target pY .
We used a single flow using a B-NAF with 2 hidden layers of
100 units each. We train by minimizing KL(qY |θ‖pY) (see
Appendix B for a detailed derivation) using Monte Carlo
sampling. We optimized using Adam for 20k iterations with
an initial learning rate of α = 10−2 (and decay of 0.5 with
patience of 2k steps), default β1, β2, and a batch size of
200. Planar flow figures were taken from Chen et al. (2018).
Note that planar flows were trained for 500k iterations using
RMSProp (Tieleman & Hinton, 2012).

Results Figure 2 shows that our model perfectly matches
all target distributions. Indeed, on functions 3 and 4 it looks
like B-NAF can better learn the density in certain areas. The
model capacity of planar normalizing flows is determined
by their depth (K) and Rezende & Mohamed (2015) had
to stack 32 flows to match the energy function reasonably
well. Deeper networks are harder to optimize, and our flow
matches all the targets using a neural network with only 2
hidden layers.

H. Real data density estimation
H.1. Datasets

Following Papamakarios et al. (2017), we perform un-
conditional density estimation on four datasets (Dua &
Karra Taniskidou, 2017) from UCI machine learning repos-
itory4 as well as one dataset of patches of images (Martin
et al., 2001): POWER containing electric power consump-
tion in a household over a period of 4 years, GAS containing
logs of 8 chemical sensors exposed to a mixture of gases,
HEPMASS, a dataset from a Monte Carlo simulation for
high energy physics experiments, MINIBOONE that con-
tains examples of electron neutrino and muon neutrino, and
BSDS300 which is obtained by extracting random patches
from the homonym datasets of natural images.

H.2. Hyper-parameters

For our B-NAF, we stacked 5 flows and we employed a
small grid search on the number of layers and the size of
hidden units per flow (L ∈ {1, 2} andH ∈ {10d, 20d, 40d},
respectively, where d is the input size of datapoints which is
different for each dataset). When stacking B-NAF flows, the
elements of each output vector are permuted so that a differ-
ent set of elements is considered at each flow. This technique
is not novel and it is also used by Dinh et al. (2017); Papa-
makarios et al. (2017); Kingma et al. (2016). We trained
using Adam with Polyak averaging (with φ = 0.998) as in
NAF (Polyak & Juditsky, 1992). We also applied an expo-
nentially decaying learning rate schedule (from α = 10−2

with rate λ = 0.5) based on no-improvement with patience
of 20 epochs. We trained until convergence (but maximum
1k epochs), stopping after 100 epochs without improvement
on validation set.

I. Variational Auto-Encoders
An interesting application of our framework is modelling
more flexible posterior distributions in a variational auto-
encoder (VAE) setting (Kingma & Welling, 2013). In
this setting, we assume that an observation x (i.e., the
data) is drawn from the marginal of a deep latent model,
i.e. X ∼ pX|θ, where pX|θ(x) =

∫
pZ(z)pX|Z,θ(x|z)dz

where Z ∼ N (0, I) is unobserved. The goal is performing
maximum likelihood estimation of the marginal. Since Z
is not observed, maximizing the objective would require
marginalization over the latent variables, which is generally
intractable. Using variational inference (Jordan et al., 1999),
we can maximize a lower bound on log-likelihood:

log pX|θ(x) ≥ E qZ|X,φ(z)

[
log

pXZ|θ(x, z)

qZ|X,φ(z|x)

]
, (18)

4http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml

Block Neural Autoregressive Flow

Model MNIST Freyfaces Omniglot Caltech 101
-ELBO↓ NLL↓ -ELBO↓ NLL↓ -ELBO↓ NLL↓ -ELBO↓ NLL↓

VAE 86.55±.06 82.14±.07 4.53±.02 4.40±.03 104.28±.39 97.25±.23 110.80±.46 99.62±.74

Planar 86.06±.31 81.91±.22 4.40±.06 4.31±.06 102.65±.42 96.04±.28 109.66±.42 98.53±.68

IAF 84.20±.17 80.79±.12 4.47±.05 4.38±.04 102.41±.04 96.08±.16 111.58±.38 99.92±.30

Sylvester 83.32±.06 80.22±.03 4.45±.04 4.35±.04 99.00±.04 93.77±.03 104.62±.29 93.82±.62

Ours 83.59±.15 80.71±.09 4.42±.05 4.33±.04 100.08±.07 94.83±.10 105.42±.49 94.91±.51

Table 2. Negative log-likelihood (NLL) and negative evidence lower bound (-ELBO) for static MNIST, Freyfaces, Omniglot and Caltech
101 Silhouettes datasets. For the Freyfaces dataset the results are reported in bits per dim. For the other datasets the results are reported in
nats. For all datasets we report the mean and the standard deviations over 3 runs with different random initializations.

where pX|Z,θ and qZ|X,φ are parametrized via neural net-
works with learnable parameters θ and φ (Kingma &
Welling, 2013), in particular, qZ|X,φ is an approximation
to the intractable posterior pZ|X,θ. This bound is called
the evidence lower bound (ELBO), and maximizing the
ELBO is equivalent to minimizing KL(qZ|X,φ‖pZ|X,θ).
The more expressive the approximating family is, the more
likely we are to obtain a tight bound. Recent literature
approaches tighter bounds by approximating the posterior
with normalizing flows. Also note that NFs reparametrize
qZ|X,φ(z|x) = qY (fφ(z;x))

∣∣detJfφ(z;x)∣∣ via a simpler
fixed base distribution, e.g. a standard Gaussian, and there-
fore we can follow stochastic gradient estimates of the
ELBO with respect to both sets of parameters. In this exper-
iment, we use our flow for posterior approximation showing
that B-NAF compares with recently proposed NFs for vari-
ational inference. We reproduce experiments by van den
Berg et al. (2018) (Sylvester flows or SNF) while replacing
their flow with ours. We keep the encoder and decoder net-
works exactly the same to fairly compare with all models
trained with such procedure. We compare our B-NAF to
their flows on the same 4 datasets as well as to a normal
VAE (Kingma & Welling, 2013), planar flows (Rezende &
Mohamed, 2015), and IAFs (Kingma et al., 2016).5

In this experiment, the input dimensionality of the flow is
fixed to d = 64. We employed a small grid search on the
MNIST dataset on the number of flows K ∈ {4, 8}, and on
thee size of hidden units per flow H ∈ {2d, 4d, 8d} while
keeping the number of layers fixed at L = 1. The elements
of each output vector are permuted after each B-NAF flow
(as we do in § 4). We keep the best hyper-parameters of this
search for the other datasets. We train using Adamax with
α = 5 · 10−4. We point to Appendix A of van den Berg
et al. (2018) for details on the network architectures for the
encoder and decoder.

5 Although also Huang et al. (2018) proposed an experiment
with VAEs for NAF, they used only one dataset (MNIST) employed
a different encoder/decoder architecture than van den Berg et al.
(2018). Therefore, results are not comparable.

Datasets Following van den Berg et al. (2018) we carried
our experiments on 4 datasets: statically binarized MNIST
(Larochelle & Murray, 2011), Freyfaces6, Omniglot (Lake
et al., 2015) and Caltech 101 Silhouettes (Marlin et al.,
2010). All those datasets consist of black and white images
of different sizes.

Amortizing flow parameters When using NFs in an
amortized inference setting, the parameters of each flow
are not learned directly but predicted with another function
from each datapoint (Rezende & Mohamed, 2015). In our
case, we do not amortize all parameters of B-NAF since
that would require very large predictors and we want to
keep our flow memory efficient. Alternatively, every affine
matrix W ∈ Rn×m is shared among all datapoints. Then,
for each affine transformation, we achieve a degree of amor-
tization by predicting 3 vectors, the bias b ∈ Rn and 2
vectors v1 ∈ Rn and v2 ∈ Rm that we multiply row- and
column-wise respectively to W .

Results Table 2 shows the results of these experiments.
From the grid search, it turned out that the best B-NAF
model has K = 8 (flows) and H = 4d (hidden units).
Note that the best models reported by van den Berg et al.
(2018) used 16 flows. Our model is quite flexible without
being as deep as other models. Results show that B-NAF
is better than normal VAE, planar flows, and IAFs in all
four datasets. Although B-NAF performs slightly worse
than Sylvester flows, van den Berg et al. (2018) applied a
full amortization for the parameters of the flow, while we
do not. They proposed two alternative parametrizations to
construct Sylvester flows: orthogonal SNF and Houseolder
SNF. For each datapoint, SNF has to predict from 50.7k
to 76.8k values (depending on the parametrization) to fully
amortize parameters of the flow, while we use only 7.7k (i.e.,
6.64× to 10.0× fewer). Notably, recalling that these are
not trainable parameters, we use 6.16× (orthogonal SNF)
and 9.35× (Householder SNF) fewer trainable parameters

6http://www.cs.nyu.edu/˜roweis/data/frey_
rawface.mat

http://www.cs.nyu.edu/~roweis/data/frey_rawface.mat
http://www.cs.nyu.edu/~roweis/data/frey_rawface.mat

Block Neural Autoregressive Flow

as well. Besides, we also use 14.45× fewer parameters than
IAF. This shows that IAF and SNF are over-parametrized
too, and it is possible to achieve similar performance in the
context of variational inference with an order of magnitude
fewer parameters.

